Grad Coach

Research Topics & Ideas: Education

170+ Research Ideas To Fast-Track Your Project

Topic Kickstarter: Research topics in education

If you’re just starting out exploring education-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from actual dissertations and theses..

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable education-related research topic, you’ll need to identify a clear and convincing research gap , and a viable plan of action to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Overview: Education Research Topics

  • How to find a research topic (video)
  • List of 50+ education-related research topics/ideas
  • List of 120+ level-specific research topics 
  • Examples of actual dissertation topics in education
  • Tips to fast-track your topic ideation (video)
  • Free Webinar : Topic Ideation 101
  • Where to get extra help

Education-Related Research Topics & Ideas

Below you’ll find a list of education-related research topics and idea kickstarters. These are fairly broad and flexible to various contexts, so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • The impact of school funding on student achievement
  • The effects of social and emotional learning on student well-being
  • The effects of parental involvement on student behaviour
  • The impact of teacher training on student learning
  • The impact of classroom design on student learning
  • The impact of poverty on education
  • The use of student data to inform instruction
  • The role of parental involvement in education
  • The effects of mindfulness practices in the classroom
  • The use of technology in the classroom
  • The role of critical thinking in education
  • The use of formative and summative assessments in the classroom
  • The use of differentiated instruction in the classroom
  • The use of gamification in education
  • The effects of teacher burnout on student learning
  • The impact of school leadership on student achievement
  • The effects of teacher diversity on student outcomes
  • The role of teacher collaboration in improving student outcomes
  • The implementation of blended and online learning
  • The effects of teacher accountability on student achievement
  • The effects of standardized testing on student learning
  • The effects of classroom management on student behaviour
  • The effects of school culture on student achievement
  • The use of student-centred learning in the classroom
  • The impact of teacher-student relationships on student outcomes
  • The achievement gap in minority and low-income students
  • The use of culturally responsive teaching in the classroom
  • The impact of teacher professional development on student learning
  • The use of project-based learning in the classroom
  • The effects of teacher expectations on student achievement
  • The use of adaptive learning technology in the classroom
  • The impact of teacher turnover on student learning
  • The effects of teacher recruitment and retention on student learning
  • The impact of early childhood education on later academic success
  • The impact of parental involvement on student engagement
  • The use of positive reinforcement in education
  • The impact of school climate on student engagement
  • The role of STEM education in preparing students for the workforce
  • The effects of school choice on student achievement
  • The use of technology in the form of online tutoring

Level-Specific Research Topics

Looking for research topics for a specific level of education? We’ve got you covered. Below you can find research topic ideas for primary, secondary and tertiary-level education contexts. Click the relevant level to view the respective list.

Research Topics: Pick An Education Level

Primary education.

  • Investigating the effects of peer tutoring on academic achievement in primary school
  • Exploring the benefits of mindfulness practices in primary school classrooms
  • Examining the effects of different teaching strategies on primary school students’ problem-solving skills
  • The use of storytelling as a teaching strategy in primary school literacy instruction
  • The role of cultural diversity in promoting tolerance and understanding in primary schools
  • The impact of character education programs on moral development in primary school students
  • Investigating the use of technology in enhancing primary school mathematics education
  • The impact of inclusive curriculum on promoting equity and diversity in primary schools
  • The impact of outdoor education programs on environmental awareness in primary school students
  • The influence of school climate on student motivation and engagement in primary schools
  • Investigating the effects of early literacy interventions on reading comprehension in primary school students
  • The impact of parental involvement in school decision-making processes on student achievement in primary schools
  • Exploring the benefits of inclusive education for students with special needs in primary schools
  • Investigating the effects of teacher-student feedback on academic motivation in primary schools
  • The role of technology in developing digital literacy skills in primary school students
  • Effective strategies for fostering a growth mindset in primary school students
  • Investigating the role of parental support in reducing academic stress in primary school children
  • The role of arts education in fostering creativity and self-expression in primary school students
  • Examining the effects of early childhood education programs on primary school readiness
  • Examining the effects of homework on primary school students’ academic performance
  • The role of formative assessment in improving learning outcomes in primary school classrooms
  • The impact of teacher-student relationships on academic outcomes in primary school
  • Investigating the effects of classroom environment on student behavior and learning outcomes in primary schools
  • Investigating the role of creativity and imagination in primary school curriculum
  • The impact of nutrition and healthy eating programs on academic performance in primary schools
  • The impact of social-emotional learning programs on primary school students’ well-being and academic performance
  • The role of parental involvement in academic achievement of primary school children
  • Examining the effects of classroom management strategies on student behavior in primary school
  • The role of school leadership in creating a positive school climate Exploring the benefits of bilingual education in primary schools
  • The effectiveness of project-based learning in developing critical thinking skills in primary school students
  • The role of inquiry-based learning in fostering curiosity and critical thinking in primary school students
  • The effects of class size on student engagement and achievement in primary schools
  • Investigating the effects of recess and physical activity breaks on attention and learning in primary school
  • Exploring the benefits of outdoor play in developing gross motor skills in primary school children
  • The effects of educational field trips on knowledge retention in primary school students
  • Examining the effects of inclusive classroom practices on students’ attitudes towards diversity in primary schools
  • The impact of parental involvement in homework on primary school students’ academic achievement
  • Investigating the effectiveness of different assessment methods in primary school classrooms
  • The influence of physical activity and exercise on cognitive development in primary school children
  • Exploring the benefits of cooperative learning in promoting social skills in primary school students

Secondary Education

  • Investigating the effects of school discipline policies on student behavior and academic success in secondary education
  • The role of social media in enhancing communication and collaboration among secondary school students
  • The impact of school leadership on teacher effectiveness and student outcomes in secondary schools
  • Investigating the effects of technology integration on teaching and learning in secondary education
  • Exploring the benefits of interdisciplinary instruction in promoting critical thinking skills in secondary schools
  • The impact of arts education on creativity and self-expression in secondary school students
  • The effectiveness of flipped classrooms in promoting student learning in secondary education
  • The role of career guidance programs in preparing secondary school students for future employment
  • Investigating the effects of student-centered learning approaches on student autonomy and academic success in secondary schools
  • The impact of socio-economic factors on educational attainment in secondary education
  • Investigating the impact of project-based learning on student engagement and academic achievement in secondary schools
  • Investigating the effects of multicultural education on cultural understanding and tolerance in secondary schools
  • The influence of standardized testing on teaching practices and student learning in secondary education
  • Investigating the effects of classroom management strategies on student behavior and academic engagement in secondary education
  • The influence of teacher professional development on instructional practices and student outcomes in secondary schools
  • The role of extracurricular activities in promoting holistic development and well-roundedness in secondary school students
  • Investigating the effects of blended learning models on student engagement and achievement in secondary education
  • The role of physical education in promoting physical health and well-being among secondary school students
  • Investigating the effects of gender on academic achievement and career aspirations in secondary education
  • Exploring the benefits of multicultural literature in promoting cultural awareness and empathy among secondary school students
  • The impact of school counseling services on student mental health and well-being in secondary schools
  • Exploring the benefits of vocational education and training in preparing secondary school students for the workforce
  • The role of digital literacy in preparing secondary school students for the digital age
  • The influence of parental involvement on academic success and well-being of secondary school students
  • The impact of social-emotional learning programs on secondary school students’ well-being and academic success
  • The role of character education in fostering ethical and responsible behavior in secondary school students
  • Examining the effects of digital citizenship education on responsible and ethical technology use among secondary school students
  • The impact of parental involvement in school decision-making processes on student outcomes in secondary schools
  • The role of educational technology in promoting personalized learning experiences in secondary schools
  • The impact of inclusive education on the social and academic outcomes of students with disabilities in secondary schools
  • The influence of parental support on academic motivation and achievement in secondary education
  • The role of school climate in promoting positive behavior and well-being among secondary school students
  • Examining the effects of peer mentoring programs on academic achievement and social-emotional development in secondary schools
  • Examining the effects of teacher-student relationships on student motivation and achievement in secondary schools
  • Exploring the benefits of service-learning programs in promoting civic engagement among secondary school students
  • The impact of educational policies on educational equity and access in secondary education
  • Examining the effects of homework on academic achievement and student well-being in secondary education
  • Investigating the effects of different assessment methods on student performance in secondary schools
  • Examining the effects of single-sex education on academic performance and gender stereotypes in secondary schools
  • The role of mentoring programs in supporting the transition from secondary to post-secondary education

Tertiary Education

  • The role of student support services in promoting academic success and well-being in higher education
  • The impact of internationalization initiatives on students’ intercultural competence and global perspectives in tertiary education
  • Investigating the effects of active learning classrooms and learning spaces on student engagement and learning outcomes in tertiary education
  • Exploring the benefits of service-learning experiences in fostering civic engagement and social responsibility in higher education
  • The influence of learning communities and collaborative learning environments on student academic and social integration in higher education
  • Exploring the benefits of undergraduate research experiences in fostering critical thinking and scientific inquiry skills
  • Investigating the effects of academic advising and mentoring on student retention and degree completion in higher education
  • The role of student engagement and involvement in co-curricular activities on holistic student development in higher education
  • The impact of multicultural education on fostering cultural competence and diversity appreciation in higher education
  • The role of internships and work-integrated learning experiences in enhancing students’ employability and career outcomes
  • Examining the effects of assessment and feedback practices on student learning and academic achievement in tertiary education
  • The influence of faculty professional development on instructional practices and student outcomes in tertiary education
  • The influence of faculty-student relationships on student success and well-being in tertiary education
  • The impact of college transition programs on students’ academic and social adjustment to higher education
  • The impact of online learning platforms on student learning outcomes in higher education
  • The impact of financial aid and scholarships on access and persistence in higher education
  • The influence of student leadership and involvement in extracurricular activities on personal development and campus engagement
  • Exploring the benefits of competency-based education in developing job-specific skills in tertiary students
  • Examining the effects of flipped classroom models on student learning and retention in higher education
  • Exploring the benefits of online collaboration and virtual team projects in developing teamwork skills in tertiary students
  • Investigating the effects of diversity and inclusion initiatives on campus climate and student experiences in tertiary education
  • The influence of study abroad programs on intercultural competence and global perspectives of college students
  • Investigating the effects of peer mentoring and tutoring programs on student retention and academic performance in tertiary education
  • Investigating the effectiveness of active learning strategies in promoting student engagement and achievement in tertiary education
  • Investigating the effects of blended learning models and hybrid courses on student learning and satisfaction in higher education
  • The role of digital literacy and information literacy skills in supporting student success in the digital age
  • Investigating the effects of experiential learning opportunities on career readiness and employability of college students
  • The impact of e-portfolios on student reflection, self-assessment, and showcasing of learning in higher education
  • The role of technology in enhancing collaborative learning experiences in tertiary classrooms
  • The impact of research opportunities on undergraduate student engagement and pursuit of advanced degrees
  • Examining the effects of competency-based assessment on measuring student learning and achievement in tertiary education
  • Examining the effects of interdisciplinary programs and courses on critical thinking and problem-solving skills in college students
  • The role of inclusive education and accessibility in promoting equitable learning experiences for diverse student populations
  • The role of career counseling and guidance in supporting students’ career decision-making in tertiary education
  • The influence of faculty diversity and representation on student success and inclusive learning environments in higher education

Research topic idea mega list

Education-Related Dissertations & Theses

While the ideas we’ve presented above are a decent starting point for finding a research topic in education, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses in the education space to see how this all comes together in practice.

Below, we’ve included a selection of education-related research projects to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • From Rural to Urban: Education Conditions of Migrant Children in China (Wang, 2019)
  • Energy Renovation While Learning English: A Guidebook for Elementary ESL Teachers (Yang, 2019)
  • A Reanalyses of Intercorrelational Matrices of Visual and Verbal Learners’ Abilities, Cognitive Styles, and Learning Preferences (Fox, 2020)
  • A study of the elementary math program utilized by a mid-Missouri school district (Barabas, 2020)
  • Instructor formative assessment practices in virtual learning environments : a posthumanist sociomaterial perspective (Burcks, 2019)
  • Higher education students services: a qualitative study of two mid-size universities’ direct exchange programs (Kinde, 2020)
  • Exploring editorial leadership : a qualitative study of scholastic journalism advisers teaching leadership in Missouri secondary schools (Lewis, 2020)
  • Selling the virtual university: a multimodal discourse analysis of marketing for online learning (Ludwig, 2020)
  • Advocacy and accountability in school counselling: assessing the use of data as related to professional self-efficacy (Matthews, 2020)
  • The use of an application screening assessment as a predictor of teaching retention at a midwestern, K-12, public school district (Scarbrough, 2020)
  • Core values driving sustained elite performance cultures (Beiner, 2020)
  • Educative features of upper elementary Eureka math curriculum (Dwiggins, 2020)
  • How female principals nurture adult learning opportunities in successful high schools with challenging student demographics (Woodward, 2020)
  • The disproportionality of Black Males in Special Education: A Case Study Analysis of Educator Perceptions in a Southeastern Urban High School (McCrae, 2021)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic within education, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Topic Kickstarter - Need Help Finding A Research Topic?

You Might Also Like:

Research topics and ideas in psychology

55 Comments

Watson Kabwe

This is an helpful tool 🙏

Musarrat Parveen

Special education

Akbar khan

Really appreciated by this . It is the best platform for research related items

Trishna Roy

Research title related to school of students

Angel taña

Research title related to students

Ngirumuvugizi Jaccques

Good idea I’m going to teach my colleagues

Anangnerisia@gmail.com

You can find our list of nursing-related research topic ideas here: https://gradcoach.com/research-topics-nursing/

FOSU DORIS

Write on action research topic, using guidance and counseling to address unwanted teenage pregnancy in school

Samson ochuodho

Thanks a lot

Johaima

I learned a lot from this site, thank you so much!

Rhod Tuyan

Thank you for the information.. I would like to request a topic based on school major in social studies

Mercedes Bunsie

parental involvement and students academic performance

Abshir Mustafe Cali

Science education topics?

Karen Joy Andrade

How about School management and supervision pls.?

JOHANNES SERAME MONYATSI

Hi i am an Deputy Principal in a primary school. My wish is to srudy foe Master’s degree in Education.Please advice me on which topic can be relevant for me. Thanks.

NKWAIN Chia Charles

Every topic proposed above on primary education is a starting point for me. I appreciate immensely the team that has sat down to make a detail of these selected topics just for beginners like us. Be blessed.

Nkwain Chia Charles

Kindly help me with the research questions on the topic” Effects of workplace conflict on the employees’ job performance”. The effects can be applicable in every institution,enterprise or organisation.

Kelvin Kells Grant

Greetings, I am a student majoring in Sociology and minoring in Public Administration. I’m considering any recommended research topic in the field of Sociology.

Sulemana Alhassan

I’m a student pursuing Mphil in Basic education and I’m considering any recommended research proposal topic in my field of study

Kupoluyi Regina

Kindly help me with a research topic in educational psychology. Ph.D level. Thank you.

Project-based learning is a teaching/learning type,if well applied in a classroom setting will yield serious positive impact. What can a teacher do to implement this in a disadvantaged zone like “North West Region of Cameroon ( hinterland) where war has brought about prolonged and untold sufferings on the indegins?

Damaris Nzoka

I wish to get help on topics of research on educational administration

I wish to get help on topics of research on educational administration PhD level

Sadaf

I am also looking for such type of title

Afriyie Saviour

I am a student of undergraduate, doing research on how to use guidance and counseling to address unwanted teenage pregnancy in school

wysax

the topics are very good regarding research & education .

William AU Mill

Can i request your suggestion topic for my Thesis about Teachers as an OFW. thanx you

ChRISTINE

Would like to request for suggestions on a topic in Economics of education,PhD level

Would like to request for suggestions on a topic in Economics of education

George

Hi 👋 I request that you help me with a written research proposal about education the format

Sarah Moyambo

l would like to request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

Ernest Gyabaah

I would to inquire on research topics on Educational psychology, Masters degree

Aron kirui

I am PhD student, I am searching my Research topic, It should be innovative,my area of interest is online education,use of technology in education

revathy a/p letchumanan

request suggestion on topic in masters in medical education .

D.Newlands PhD.

Look at British Library as they keep a copy of all PhDs in the UK Core.ac.uk to access Open University and 6 other university e-archives, pdf downloads mostly available, all free.

Monica

May I also ask for a topic based on mathematics education for college teaching, please?

Aman

Please I am a masters student of the department of Teacher Education, Faculty of Education Please I am in need of proposed project topics to help with my final year thesis

Ellyjoy

Am a PhD student in Educational Foundations would like a sociological topic. Thank

muhammad sani

please i need a proposed thesis project regardging computer science

also916

Greetings and Regards I am a doctoral student in the field of philosophy of education. I am looking for a new topic for my thesis. Because of my work in the elementary school, I am looking for a topic that is from the field of elementary education and is related to the philosophy of education.

shantel orox

Masters student in the field of curriculum, any ideas of a research topic on low achiever students

Rey

In the field of curriculum any ideas of a research topic on deconalization in contextualization of digital teaching and learning through in higher education

Omada Victoria Enyojo

Amazing guidelines

JAMES MALUKI MUTIA

I am a graduate with two masters. 1) Master of arts in religious studies and 2) Master in education in foundations of education. I intend to do a Ph.D. on my second master’s, however, I need to bring both masters together through my Ph.D. research. can I do something like, ” The contribution of Philosophy of education for a quality religion education in Kenya”? kindly, assist and be free to suggest a similar topic that will bring together the two masters. thanks in advance

betiel

Hi, I am an Early childhood trainer as well as a researcher, I need more support on this topic: The impact of early childhood education on later academic success.

TURIKUMWE JEAN BOSCO

I’m a student in upper level secondary school and I need your support in this research topics: “Impact of incorporating project -based learning in teaching English language skills in secondary schools”.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Project Topics

Mathematics Education Project Topics and Materials | PDF/DOC

List of best mathematics education project topics and materials for mathematics education students:.

Causes And Effects Of Mass Failure In Junior Secondary School Certificate Examination (Jssce) Mathematics. A Case Study Of Nsukka Educatiopn Zone Of Enugu State.

Comparison Of Junior And High School Attitude Towards Mathematics. .

Relative Academic Performances Of Secondary School Students In School Certificate Mathematics & English Language. A Case Study Of Enugu North L.G.A.

Impact Of Laboratory Practical On Senior Secondary School Student Academic Achievement In SS2 Biology, Chemistry And Mathematics. A Case Study Of Enugu North Lga Of Enugu State.

Effect Of Class Size To The Teaching And Learning Of Mathematics. In Enugu North Local Government Area Of Enugu State.

Problems Militating Against The Effective Teaching And Learning Of Mathematics In Junior Secondary Schools. (A Case Study Of Enugu West Senatorial Zone, Enugu State).

Availability Of Laboratory Facilities For Effective Teaching – Learning Of Mathematics, Integrated Science And Computer Science In Junior Secondary Schools. Case Study Of Enugu North L.G.A.

Impact Of Laboratory Practical On Senior Secondary School Student Academic Achievement In Biology, Chemistry And Mathematics. Case Study Of Ss2 In Enugu North Lga.

Effect Of Student Perception On Teaching And Learning Mathematics. A Case Study Of Igboeze North Local Government Area Of Enugu State.

Investigation Into Academic Indiscipline And Failure Among Secondary School Students In (English Language Mathematics, Igbo language, Agricultural Science, Economics. A Case Study Of Nigeria.

Problem Of Teaching And Learning Of Mathematics In Senior Secondary Schools. Case Study Of Enugu North Lga Of Enugu State.

  • Innovative Pedagogical Approaches: Explore novel teaching methods and strategies in mathematics education, such as flipped classrooms, inquiry-based learning, and project-based learning, assessing their effectiveness in enhancing student engagement and understanding.
  • Integration of Technology: Investigate the integration of technology, including computer-based learning tools, educational apps, and interactive simulations, to facilitate mathematical understanding and skill development among students.
  • Assessment Methods: Examine various assessment methods in mathematics education, including formative assessment, summative assessment, and alternative assessment techniques, to evaluate student learning outcomes accurately.
  • Cultural Relevance in Mathematics Education: Analyze the cultural factors that influence mathematics teaching and learning, exploring ways to make mathematical content more culturally relevant and accessible to diverse student populations.
  • Gender and Mathematics: Investigate gender differences in mathematical achievement and attitudes towards mathematics, exploring strategies to address gender disparities and promote equity in mathematics education.
  • Mathematics Anxiety: Explore the phenomenon of mathematics anxiety among students and its impact on learning outcomes, identifying effective strategies for alleviating anxiety and promoting positive attitudes towards mathematics.
  • Teacher Professional Development: Examine professional development programs for mathematics teachers, focusing on strategies for enhancing pedagogical knowledge, content knowledge, and instructional practices.
  • Mathematical Problem Solving: Investigate the development of mathematical problem-solving skills among students, exploring instructional approaches and learning environments that foster problem-solving abilities.
  • Mathematics Curriculum Development: Analyze mathematics curriculum frameworks and standards, exploring approaches to curriculum design and implementation that promote coherence, rigor, and relevance.
  • Mathematical Modeling: Explore the use of mathematical modeling in the classroom, investigating how modeling tasks can engage students in authentic mathematical inquiry and real-world problem-solving.
  • Mathematics and Multilingual Learners: Investigate effective instructional strategies for teaching mathematics to multilingual learners, considering language barriers and cultural differences in mathematical understanding.
  • Mathematics and Special Education: Explore strategies for teaching mathematics to students with diverse learning needs, including those with disabilities or learning difficulties, focusing on inclusive instructional practices.
  • Mathematics and Gifted Education: Examine approaches to challenging and enriching the mathematical learning experiences of gifted students, considering differentiated instruction and enrichment programs.
  • Mathematics and Social Justice: Investigate the intersection of mathematics education and social justice, exploring ways to address inequities in access to high-quality mathematics instruction and opportunities.
  • Mathematics Teacher Identity: Explore the development of teacher identity in mathematics education, considering factors that shape teachers’ beliefs, attitudes, and practices in teaching mathematics.
  • Mathematics Teacher Collaboration: Investigate collaborative practices among mathematics teachers, including professional learning communities, lesson study groups, and co-teaching arrangements, to promote teacher collaboration and collective efficacy.
  • Parental Involvement in Mathematics Education: Examine the role of parents and families in supporting children’s mathematical learning, exploring strategies for enhancing parental involvement and communication between home and school.
  • Cross-Curricular Connections: Explore interdisciplinary connections between mathematics and other subject areas, such as science, technology, engineering, and the arts, fostering integrated approaches to teaching and learning.
  • History of Mathematics Education: Investigate the historical development of mathematics education, examining influential figures, movements, and reforms that have shaped the field over time.
  • Ethics in Mathematics Education Research: Reflect on ethical considerations in mathematics education research, including issues related to participant consent, confidentiality, and potential harm to participants.
  • Mathematics Teacher Beliefs: Explore the beliefs and attitudes of mathematics teachers towards teaching and learning, investigating the impact of these beliefs on instructional practices and student outcomes.
  • Mathematics and Motivation: Investigate motivational factors that influence student engagement and achievement in mathematics, exploring strategies for fostering intrinsic motivation and a growth mindset.
  • Mathematics and Socioeconomic Status: Examine the relationship between socioeconomic status and mathematics achievement, considering the impact of poverty, access to resources, and educational opportunities on student outcomes.
  • Assessment for Learning: Explore the principles of assessment for learning in mathematics education, focusing on how formative assessment practices can enhance student understanding and inform instructional decisions.
  • Mathematics and Neuroscience: Investigate insights from cognitive neuroscience that inform our understanding of mathematical learning processes, exploring implications for instructional design and intervention strategies.
  • Mathematics Teacher Preparation: Examine pre-service and in-service teacher preparation programs in mathematics education, evaluating the effectiveness of different approaches in preparing teachers for the classroom.
  • Mathematics and Gifted Education: Investigate approaches to identifying and serving gifted students in mathematics, considering issues related to assessment, curriculum differentiation, and talent development.
  • Mathematics and Social Media: Explore the use of social media platforms for mathematics education, considering how online communities, resources, and collaborative tools can support teaching and learning.
  • Mathematics and Environmental Education: Investigate connections between mathematics and environmental education, exploring ways to integrate mathematical concepts and skills into the study of environmental issues and sustainability.
  • Mathematics and Critical Thinking: Examine the role of mathematics in promoting critical thinking skills, exploring instructional strategies that encourage students to analyze, evaluate, and solve complex problems.
  • Mathematics and Cultural Diversity: Investigate cultural perspectives on mathematics teaching and learning, considering how cultural norms, values, and practices influence mathematical reasoning and problem-solving approaches.
  • Mathematics and Entrepreneurship Education: Explore connections between mathematics education and entrepreneurship education, considering how mathematical thinking and problem-solving skills are essential for entrepreneurial success.
  • Mathematics and Global Competence: Investigate the role of mathematics education in fostering global competence, including intercultural understanding, communication skills, and awareness of global issues.
  • Mathematics and Environmental Justice: Explore the intersection of mathematics education and environmental justice, considering how mathematical modeling and data analysis can inform advocacy and decision-making.
  • Mathematics and Early Childhood Education: Investigate effective approaches to teaching mathematics in early childhood settings, focusing on developmentally appropriate activities and instructional strategies.
  • Mathematics and Indigenous Knowledge: Explore connections between mathematics education and indigenous knowledge systems, considering culturally relevant approaches to teaching and learning mathematics.
  • Mathematics and Health Education: Investigate connections between mathematics education and health education, exploring how mathematical concepts and skills can be applied to understanding health-related data and making informed decisions.
  • Mathematics and Social Emotional Learning: Explore the intersection of mathematics education and social-emotional learning, considering how mathematical tasks and collaborative activities can promote skills such as self-regulation, perseverance, and empathy.
  • Mathematics and Career Readiness: Investigate the role of mathematics education in preparing students for future careers, considering the relevance of mathematical skills in various industries and professions.
  • Mathematics and Sustainable Development Goals: Explore connections between mathematics education and the United Nations Sustainable Development Goals, considering how mathematical thinking and problem-solving can contribute to addressing global challenges such as poverty, inequality, and climate change.
  • The Impact of Gamification on Mathematics Learning in Elementary Schools.
  • Investigating the Effectiveness of Peer Tutoring in Improving Math Performance.
  • Analyzing the Relationship Between Math Anxiety and Academic Achievement.
  • Developing Interactive Math Lessons Using Virtual Reality Technology.
  • The Role of Gender in Math Achievement: A Comparative Study.
  • Exploring the Use of Manipulatives in Teaching Elementary Mathematics.
  • Investigating the Impact of Flipped Classroom Models on Math Learning.
  • Assessing the Effectiveness of Online Math Platforms in Improving Skills.
  • Analyzing the Influence of Socioeconomic Status on Math Achievement.
  • Implementing Project-Based Learning in High School Mathematics.
  • Examining the Use of Math Apps in Early Childhood Education.
  • Investigating the Correlation Between Spatial Skills and Math Performance.
  • The Role of Professional Development in Enhancing Math Teaching.
  • Assessing the Impact of Differentiated Instruction in Math Classrooms.
  • Integrating Math and Art: A Creative Approach to Teaching Geometry.
  • Exploring the Effectiveness of Inquiry-Based Learning in Mathematics.
  • Investigating the Influence of Parental Involvement on Math Achievement.
  • Analyzing the Impact of Math Competitions on Student Motivation.
  • The Use of Storytelling in Teaching Mathematical Concepts.
  • Examining the Benefits of Cooperative Learning in Math Classes.
  • Implementing Real-World Applications in High School Math Curriculum.
  • Investigating the Relationship Between Math Literacy and Critical Thinking.
  • Analyzing the Effect of Mindfulness Practices on Math Anxiety.
  • Exploring the Integration of Technology in College-level Mathematics.
  • Assessing the Effectiveness of Math Intervention Programs.
  • Investigating the Impact of Homework on Math Achievement.
  • The Role of Teacher Beliefs in Shaping Math Instruction.
  • Analyzing the Influence of Cultural Background on Math Attitudes.
  • Examining the Effect of Formative Assessment on Math Learning.
  • Investigating the Role of Visualization in Understanding Math Concepts.
  • Analyzing the Impact of Blended Learning in College Mathematics.
  • Exploring the Use of Educational Games for Math Remediation.
  • Investigating the Effects of a Flipped Mastery Approach in Algebra.
  • Assessing the Relationship Between Math and Music Education.
  • The Impact of Multisensory Instruction on Math Learning Disabilities.
  • Examining the Integration of Coding in Middle School Math Curriculum.
  • Analyzing the Effectiveness of Math Journals in Elementary Education.
  • Investigating the Influence of Early Numeracy Skills on Later Math Success.
  • Assessing the Impact of Math Enrichment Programs on Gifted Students.
  • Exploring the Use of Math Manipulatives in Special Education Settings.
  • Investigating the Role of Metacognition in Math Problem Solving.
  • Analyzing the Effects of Teacher Feedback on Math Achievement.
  • The Impact of Socioeconomic Factors on Access to Advanced Math Courses.
  • Examining the Use of Interactive Whiteboards in Math Instruction.
  • Assessing the Effectiveness of Math Workshops for Teacher Professional Development.
  • Investigating the Relationship Between Math and Physical Activity.
  • Exploring the Integration of Math and Literature in Elementary Education.
  • Analyzing the Impact of Math Tutoring Programs on Student Achievement.
  • The Role of Assessment in Differentiating Math Instruction.
  • Investigating the Influence of Math Curriculum Alignment on Student Success.
  • Examining the Impact of Project-Based Learning on Geometry Understanding.
  • Assessing the Effectiveness of Math Summer Camps for Skill Retention.
  • Analyzing the Relationship Between Spatial Reasoning and Geometry Skills.
  • Investigating the Use of Math Puzzles in Developing Critical Thinking.
  • Exploring the Impact of Peer Assessment in High School Math Classes.
  • The Role of Mathematical Modeling in Real-World Problem Solving.
  • Analyzing the Effect of Math Anxiety on Career Choices in STEM Fields.
  • Investigating the Relationship Between Math and Computer Programming.
  • Assessing the Impact of Math Competitions on College Admission.
  • Examining the Use of Educational Apps for Math Homework Support.
  • Exploring the Integration of Financial Literacy in Math Education.
  • Analyzing the Effectiveness of Math Games in Preschool Settings.
  • Investigating the Impact of Teacher-Student Relationships on Math Motivation.
  • Assessing the Influence of Socioeconomic Factors on Math Homework Completion.
  • The Role of Classroom Environment in Fostering Positive Math Attitudes.
  • Examining the Effectiveness of Math Mentoring Programs.
  • Analyzing the Impact of Math Field Trips on Student Engagement.
  • Investigating the Relationship Between Math and Problem-Solving Skills.
  • Exploring the Use of Math Trails in Outdoor Education.
  • Assessing the Effect of Inquiry-Based Learning on College Math Achievement.
  • The Impact of Math Anxiety Workshops on Student Confidence.
  • Analyzing the Influence of Parental Expectations on Math Performance.
  • Investigating the Relationship Between Math and Music Aptitude.
  • Examining the Use of Math Stations in Elementary Classrooms.
  • Assessing the Effectiveness of Math Homework Hotlines for Support.
  • Analyzing the Impact of Math Competitions on Female Participation.
  • Exploring the Relationship Between Math and Logical Reasoning.
  • Investigating the Use of Math Blogs for Student Reflection.
  • The Role of Math Discourse in Developing Conceptual Understanding.
  • Examining the Effectiveness of Math Apps for Homework Assistance.
  • Assessing the Impact of Math Professional Learning Communities.
  • Investigating the Relationship Between Math and Spatial Intelligence.
  • Analyzing the Use of Project-Based Learning in Middle School Math.
  • Exploring the Integration of Math and Social Studies Curricula.
  • The Impact of Math Workshops for Parents on Home Support.
  • Assessing the Effectiveness of Math Intervention Programs for At-Risk Students.
  • Examining the Relationship Between Math and Emotional Intelligence.
  • Investigating the Use of Math Escape Rooms for Skill Development.
  • Analyzing the Effectiveness of Math Competitions for Underrepresented Groups.
  • Exploring the Impact of Math Enrichment Programs on Diverse Learners.
  • The Role of Math Blogs in Fostering a Math Community.
  • Assessing the Influence of Socioeconomic Factors on Math Extracurricular Participation.
  • Investigating the Relationship Between Math and Executive Functioning.
  • Examining the Use of Virtual Manipulatives in Online Math Instruction.
  • Analyzing the Impact of Math Expos and Fairs on Student Interest.
  • Exploring the Integration of Math and Environmental Education.
  • The Effectiveness of Math Professional Development for Early Career Teachers.
  • Assessing the Impact of Math Modeling Competitions on Critical Thinking.
  • Investigating the Relationship Between Math and Creativity.
  • Analyzing the Effect of Math Workshops for Teacher Collaboration.
  • Exploring the Use of Math Storytelling in Early Childhood Education.
  • The Impact of Math Art Projects on Visual-Spatial Skills.
  • Assessing the Relationship Between Math Homework and Family Involvement.
  • Investigating the Effectiveness of Math Software in Individualized Learning.
  • Examining the Influence of Socioeconomic Factors on Math Persistence.
  • Analyzing the Use of Math Apps for Skill Reinforcement.
  • Exploring the Integration of Math and Technology in High School Curriculum.
  • The Role of Math Games in Developing Number Sense.
  • Assessing the Impact of Math Competitions on College Readiness.
  • Investigating the Relationship Between Math and Career Aspirations.
  • Examining the Effectiveness of Math Professional Development for In-Service Teachers.
  • Analyzing the Influence of Socioeconomic Factors on Math Homework Help.
  • Exploring the Use of Math Journals for Reflective Learning.
  • The Impact of Math Camps on Advanced Placement Exam Performance.
  • Assessing the Relationship Between Math and Critical Thinking Skills.
  • Investigating the Effectiveness of Math Workshops for Teacher Evaluation.
  • Analyzing the Use of Math Escape Rooms for Concept Review.
  • Exploring the Integration of Math and Physical Education.
  • The Role of Math Clubs in Fostering a Positive Math Culture.
  • Assessing the Effectiveness of Math Apps in Homework Completion.
  • Investigating the Relationship Between Math and Problem-Solving Strategies.
  • Examining the Influence of Socioeconomic Factors on Math Test Anxiety.
  • Analyzing the Impact of Math Enrichment Programs on Advanced Learners.
  • Exploring the Use of Math Puzzles for Skill Reinforcement.
  • The Effectiveness of Math Professional Development for Elementary Teachers.
  • Assessing the Relationship Between Math and Visual Memory.
  • Investigating the Role of Math Competitions in College Admission.
  • Analyzing the Use of Math Apps for Test Preparation.
  • Exploring the Integration of Math and Health Education.
  • The Impact of Math Outreach Programs on Community Engagement.
  • Assessing the Effectiveness of Math Workshops for Teacher Collaboration.
  • Investigating the Relationship Between Math and Verbal Reasoning.
  • Examining the Influence of Socioeconomic Factors on Math Achievement Gaps.
  • Analyzing the Use of Math Blogs for Student Reflection.
  • Exploring the Integration of Math and Social Justice Education.
  • The Role of Math Games in Developing Number Fluency.
  • Assessing the Impact of Math Competitions on College Success.
  • Investigating the Effectiveness of Math Apps for Homework Support.
  • Analyzing the Relationship Between Math and Career Preparedness.
  • Exploring the Use of Math Storytelling in Middle School Education.
  • Locate and click the Mathematics Education project topic you want to download.
  • On the Mathematics Education project material’s page, click ‘Download Complete Material ‘ link.
  • You will download the Mathematics Education project topic’s complete material after a successful payment.

The time it takes to download Mathematics Education project research material depends on two factors:

  • If the Mathematics Education project topic is on this page, you will receive the complete Mathematics Education project material instantly or immediately after payment.
  • If the Mathematics Education project topic is a third-party project material, you will receive it within 1 hour.

Copy three (3) topics from the above listed Mathematics Education project topics and submit to your supervisor.

Chapter one of the above Mathematics Education topics is free. You have to donate and download any complete Mathematics Education project material.

  • Agriculture
  • Arts & Humanities
  • Engineering
  • Environmental & Physical Sciences
  • Management & Social Sciences
  • Medical & Health Sciences
  • Natural & Applied Sciences
  • All Project Fields
  • Thesis & Dissertation Topics

StatAnalytica

251+ Math Research Topics [2024 Updated]

Math research topics

Mathematics, often dubbed as the language of the universe, holds immense significance in shaping our understanding of the world around us. It’s not just about crunching numbers or solving equations; it’s about unraveling mysteries, making predictions, and creating innovative solutions to complex problems. In this blog, we embark on a journey into the realm of math research topics, exploring various branches of mathematics and their real-world applications.

How Do You Write A Math Research Topic?

Writing a math research topic involves several steps to ensure clarity, relevance, and feasibility. Here’s a guide to help you craft a compelling math research topic:

  • Identify Your Interests: Start by exploring areas of mathematics that interest you. Whether it’s pure mathematics, applied mathematics, or interdisciplinary topics, choose a field that aligns with your passion and expertise.
  • Narrow Down Your Focus: Mathematics is a broad field, so it’s essential to narrow down your focus to a specific area or problem. Consider the scope of your research and choose a topic that is manageable within your resources and time frame.
  • Review Existing Literature: Conduct a thorough literature review to understand the current state of research in your chosen area. Identify gaps, controversies, or unanswered questions that could form the basis of your research topic.
  • Formulate a Research Question: Based on your exploration and literature review, formulate a clear and concise research question. Your research question should be specific, measurable, achievable, relevant, and time-bound (SMART).
  • Consider Feasibility: Assess the feasibility of your research topic in terms of available resources, data availability, and research methodologies. Ensure that your topic is realistic and achievable within the constraints of your project.
  • Consult with Experts: Seek feedback from mentors, advisors, or experts in the field to validate your research topic and refine your ideas. Their insights can help you identify potential challenges and opportunities for improvement.
  • Refine and Iterate: Refine your research topic based on feedback and further reflection. Iterate on your ideas to ensure clarity, coherence, and relevance to the broader context of mathematics research.
  • Craft a Title: Once you have finalized your research topic, craft a compelling title that succinctly summarizes the essence of your research. Your title should be descriptive, engaging, and reflective of the key themes of your study.
  • Write a Research Proposal: Develop a comprehensive research proposal outlining the background, objectives, methodology, and expected outcomes of your research. Your research proposal should provide a clear roadmap for your study and justify the significance of your research topic.

By following these steps, you can effectively write a math research topic that is well-defined, relevant, and poised to make a meaningful contribution to the field of mathematics.

251+ Math Research Topics: Beginners To Advanced

  • Prime Number Distribution in Arithmetic Progressions
  • Diophantine Equations and their Solutions
  • Applications of Modular Arithmetic in Cryptography
  • The Riemann Hypothesis and its Implications
  • Graph Theory: Exploring Connectivity and Coloring Problems
  • Knot Theory: Unraveling the Mathematics of Knots and Links
  • Fractal Geometry: Understanding Self-Similarity and Dimensionality
  • Differential Equations: Modeling Physical Phenomena and Dynamical Systems
  • Chaos Theory: Investigating Deterministic Chaos and Strange Attractors
  • Combinatorial Optimization: Algorithms for Solving Optimization Problems
  • Computational Complexity: Analyzing the Complexity of Algorithms
  • Game Theory: Mathematical Models of Strategic Interactions
  • Number Theory: Exploring Properties of Integers and Primes
  • Algebraic Topology: Studying Topological Invariants and Homotopy Theory
  • Analytic Number Theory: Investigating Properties of Prime Numbers
  • Algebraic Geometry: Geometry Arising from Algebraic Equations
  • Galois Theory: Understanding Field Extensions and Solvability of Equations
  • Representation Theory: Studying Symmetry in Linear Spaces
  • Harmonic Analysis: Analyzing Functions on Groups and Manifolds
  • Mathematical Logic: Foundations of Mathematics and Formal Systems
  • Set Theory: Exploring Infinite Sets and Cardinal Numbers
  • Real Analysis: Rigorous Study of Real Numbers and Functions
  • Complex Analysis: Analytic Functions and Complex Integration
  • Measure Theory: Foundations of Lebesgue Integration and Probability
  • Topological Groups: Investigating Topological Structures on Groups
  • Lie Groups and Lie Algebras: Geometry of Continuous Symmetry
  • Differential Geometry: Curvature and Topology of Smooth Manifolds
  • Algebraic Combinatorics: Enumerative and Algebraic Aspects of Combinatorics
  • Ramsey Theory: Investigating Structure in Large Discrete Structures
  • Analytic Geometry: Studying Geometry Using Analytic Methods
  • Hyperbolic Geometry: Non-Euclidean Geometry of Curved Spaces
  • Nonlinear Dynamics: Chaos, Bifurcations, and Strange Attractors
  • Homological Algebra: Studying Homology and Cohomology of Algebraic Structures
  • Topological Vector Spaces: Vector Spaces with Topological Structure
  • Representation Theory of Finite Groups: Decomposition of Group Representations
  • Category Theory: Abstract Structures and Universal Properties
  • Operator Theory: Spectral Theory and Functional Analysis of Operators
  • Algebraic Number Theory: Study of Algebraic Structures in Number Fields
  • Cryptanalysis: Breaking Cryptographic Systems Using Mathematical Methods
  • Discrete Mathematics: Combinatorics, Graph Theory, and Number Theory
  • Mathematical Biology: Modeling Biological Systems Using Mathematical Tools
  • Population Dynamics: Mathematical Models of Population Growth and Interaction
  • Epidemiology: Mathematical Modeling of Disease Spread and Control
  • Mathematical Ecology: Dynamics of Ecological Systems and Food Webs
  • Evolutionary Game Theory: Evolutionary Dynamics and Strategic Behavior
  • Mathematical Neuroscience: Modeling Brain Dynamics and Neural Networks
  • Mathematical Physics: Mathematical Models in Physical Sciences
  • Quantum Mechanics: Foundations and Applications of Quantum Theory
  • Statistical Mechanics: Statistical Methods in Physics and Thermodynamics
  • Fluid Dynamics: Modeling Flow of Fluids Using Partial Differential Equations
  • Mathematical Finance: Stochastic Models in Finance and Risk Management
  • Option Pricing Models: Black-Scholes Model and Beyond
  • Portfolio Optimization: Maximizing Returns and Minimizing Risk
  • Stochastic Calculus: Calculus of Stochastic Processes and Itô Calculus
  • Financial Time Series Analysis: Modeling and Forecasting Financial Data
  • Operations Research: Optimization of Decision-Making Processes
  • Linear Programming: Optimization Problems with Linear Constraints
  • Integer Programming: Optimization Problems with Integer Solutions
  • Network Flow Optimization: Modeling and Solving Flow Network Problems
  • Combinatorial Game Theory: Analysis of Games with Perfect Information
  • Algorithmic Game Theory: Computational Aspects of Game-Theoretic Problems
  • Fair Division: Methods for Fairly Allocating Resources Among Parties
  • Auction Theory: Modeling Auction Mechanisms and Bidding Strategies
  • Voting Theory: Mathematical Models of Voting Systems and Social Choice
  • Social Network Analysis: Mathematical Analysis of Social Networks
  • Algorithm Analysis: Complexity Analysis of Algorithms and Data Structures
  • Machine Learning: Statistical Learning Algorithms and Data Mining
  • Deep Learning: Neural Network Models with Multiple Layers
  • Reinforcement Learning: Learning by Interaction and Feedback
  • Natural Language Processing: Statistical and Computational Analysis of Language
  • Computer Vision: Mathematical Models for Image Analysis and Recognition
  • Computational Geometry: Algorithms for Geometric Problems
  • Symbolic Computation: Manipulation of Mathematical Expressions
  • Numerical Analysis: Algorithms for Solving Numerical Problems
  • Finite Element Method: Numerical Solution of Partial Differential Equations
  • Monte Carlo Methods: Statistical Simulation Techniques
  • High-Performance Computing: Parallel and Distributed Computing Techniques
  • Quantum Computing: Quantum Algorithms and Quantum Information Theory
  • Quantum Information Theory: Study of Quantum Communication and Computation
  • Quantum Error Correction: Methods for Protecting Quantum Information from Errors
  • Topological Quantum Computing: Using Topological Properties for Quantum Computation
  • Quantum Algorithms: Efficient Algorithms for Quantum Computers
  • Quantum Cryptography: Secure Communication Using Quantum Key Distribution
  • Topological Data Analysis: Analyzing Shape and Structure of Data Sets
  • Persistent Homology: Topological Invariants for Data Analysis
  • Mapper Algorithm: Method for Visualization and Analysis of High-Dimensional Data
  • Algebraic Statistics: Statistical Methods Based on Algebraic Geometry
  • Tropical Geometry: Geometric Methods for Studying Polynomial Equations
  • Model Theory: Study of Mathematical Structures and Their Interpretations
  • Descriptive Set Theory: Study of Borel and Analytic Sets
  • Ergodic Theory: Study of Measure-Preserving Transformations
  • Combinatorial Number Theory: Intersection of Combinatorics and Number Theory
  • Additive Combinatorics: Study of Additive Properties of Sets
  • Arithmetic Geometry: Interplay Between Number Theory and Algebraic Geometry
  • Proof Theory: Study of Formal Proofs and Logical Inference
  • Reverse Mathematics: Study of Logical Strength of Mathematical Theorems
  • Nonstandard Analysis: Alternative Approach to Analysis Using Infinitesimals
  • Computable Analysis: Study of Computable Functions and Real Numbers
  • Graph Theory: Study of Graphs and Networks
  • Random Graphs: Probabilistic Models of Graphs and Connectivity
  • Spectral Graph Theory: Analysis of Graphs Using Eigenvalues and Eigenvectors
  • Algebraic Graph Theory: Study of Algebraic Structures in Graphs
  • Metric Geometry: Study of Geometric Structures Using Metrics
  • Geometric Measure Theory: Study of Measures on Geometric Spaces
  • Discrete Differential Geometry: Study of Differential Geometry on Discrete Spaces
  • Algebraic Coding Theory: Study of Error-Correcting Codes
  • Information Theory: Study of Information and Communication
  • Coding Theory: Study of Error-Correcting Codes
  • Cryptography: Study of Secure Communication and Encryption
  • Finite Fields: Study of Fields with Finite Number of Elements
  • Elliptic Curves: Study of Curves Defined by Cubic Equations
  • Hyperelliptic Curves: Study of Curves Defined by Higher-Degree Equations
  • Modular Forms: Analytic Functions with Certain Transformation Properties
  • L-functions: Analytic Functions Associated with Number Theory
  • Zeta Functions: Analytic Functions with Special Properties
  • Analytic Number Theory: Study of Number Theoretic Functions Using Analysis
  • Dirichlet Series: Analytic Functions Represented by Infinite Series
  • Euler Products: Product Representations of Analytic Functions
  • Arithmetic Dynamics: Study of Iterative Processes on Algebraic Structures
  • Dynamics of Rational Maps: Study of Dynamical Systems Defined by Rational Functions
  • Julia Sets: Fractal Sets Associated with Dynamical Systems
  • Mandelbrot Set: Fractal Set Associated with Iterations of Complex Quadratic Polynomials
  • Arithmetic Geometry: Study of Algebraic Geometry Over Number Fields
  • Diophantine Geometry: Study of Solutions of Diophantine Equations Using Geometry
  • Arithmetic of Elliptic Curves: Study of Elliptic Curves Over Number Fields
  • Rational Points on Curves: Study of Rational Solutions of Algebraic Equations
  • Galois Representations: Study of Representations of Galois Groups
  • Automorphic Forms: Analytic Functions with Certain Transformation Properties
  • L-functions: Analytic Functions Associated with Automorphic Forms
  • Selberg Trace Formula: Tool for Studying Spectral Theory and Automorphic Forms
  • Langlands Program: Program to Unify Number Theory and Representation Theory
  • Hodge Theory: Study of Harmonic Forms on Complex Manifolds
  • Riemann Surfaces: One-dimensional Complex Manifolds
  • Shimura Varieties: Algebraic Varieties Associated with Automorphic Forms
  • Modular Curves: Algebraic Curves Associated with Modular Forms
  • Hyperbolic Manifolds: Manifolds with Constant Negative Curvature
  • Teichmüller Theory: Study of Moduli Spaces of Riemann Surfaces
  • Mirror Symmetry: Duality Between Calabi-Yau Manifolds
  • Kähler Geometry: Study of Hermitian Manifolds with Special Symmetries
  • Algebraic Groups: Linear Algebraic Groups and Their Representations
  • Lie Algebras: Study of Algebraic Structures Arising from Lie Groups
  • Representation Theory of Lie Algebras: Study of Representations of Lie Algebras
  • Quantum Groups: Deformation of Lie Groups and Lie Algebras
  • Algebraic Topology: Study of Topological Spaces Using Algebraic Methods
  • Homotopy Theory: Study of Continuous Deformations of Spaces
  • Homology Theory: Study of Algebraic Invariants of Topological Spaces
  • Cohomology Theory: Study of Dual Concepts to Homology Theory
  • Singular Homology: Homology Theory Defined Using Simplicial Complexes
  • Sheaf Theory: Study of Sheaves and Their Cohomology
  • Differential Forms: Study of Multilinear Differential Forms
  • De Rham Cohomology: Cohomology Theory Defined Using Differential Forms
  • Morse Theory: Study of Critical Points of Smooth Functions
  • Symplectic Geometry: Study of Symplectic Manifolds and Their Geometry
  • Floer Homology: Study of Symplectic Manifolds Using Pseudoholomorphic Curves
  • Gromov-Witten Invariants: Invariants of Symplectic Manifolds Associated with Pseudoholomorphic Curves
  • Mirror Symmetry: Duality Between Symplectic and Complex Geometry
  • Calabi-Yau Manifolds: Ricci-Flat Complex Manifolds
  • Moduli Spaces: Spaces Parameterizing Geometric Objects
  • Donaldson-Thomas Invariants: Invariants Counting Sheaves on Calabi-Yau Manifolds
  • Algebraic K-Theory: Study of Algebraic Invariants of Rings and Modules
  • Homological Algebra: Study of Homology and Cohomology of Algebraic Structures
  • Derived Categories: Categories Arising from Homological Algebra
  • Stable Homotopy Theory: Homotopy Theory with Stable Homotopy Groups
  • Model Categories: Categories with Certain Homotopical Properties
  • Higher Category Theory: Study of Higher Categories and Homotopy Theory
  • Higher Topos Theory: Study of Higher Categorical Structures
  • Higher Algebra: Study of Higher Categorical Structures in Algebra
  • Higher Algebraic Geometry: Study of Higher Categorical Structures in Algebraic Geometry
  • Higher Representation Theory: Study of Higher Categorical Structures in Representation Theory
  • Higher Category Theory: Study of Higher Categorical Structures
  • Homotopical Algebra: Study of Algebraic Structures in Homotopy Theory
  • Homotopical Groups: Study of Groups with Homotopical Structure
  • Homotopical Categories: Study of Categories with Homotopical Structure
  • Homotopy Groups: Algebraic Invariants of Topological Spaces
  • Homotopy Type Theory: Study of Foundations of Mathematics Using Homotopy Theory

In conclusion, the world of mathematics is vast and multifaceted, offering endless opportunities for exploration and discovery. Whether delving into the abstract realms of pure mathematics or applying mathematical principles to solve real-world problems, mathematicians play a vital role in advancing human knowledge and shaping the future of our world.

By embracing diverse math research topics and interdisciplinary collaborations, we can unlock new possibilities and harness the power of mathematics to address the challenges of today and tomorrow. So, let’s embark on this journey together as we unravel the mysteries of numbers and explore the boundless horizons of mathematical inquiry.

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Project Topics and Materials

  • MATHEMATICS EDUCATION

Can't Find Your MATHEMATICS EDUCATION Project Topic?

For quick help chat with us now, +234 813 292 6373, +233 55 397 8005, search for your mathematics education project topic, how to get your complete mathematics education project instantly.

  • Select 3 MATHEMATICS EDUCATION Project Topics of your choice from the list above
  • Submit the 3 topics to your Supervisor for Approval.
  • Call Our Instant Help Desk on +234 813 292 6373 and Get Your Complete Project Material Instantly.
  • All project materials on this website are well researched by professionals with high level of professionalism.

FREQUENTLY ASKED QUESTIONS

Here's what our amazing customers are saying.

research project topics on mathematics education

Department Category

  • ACCOUNTING 3693
  • ACCOUNTING EDUCATION 6
  • ADULT EDUCATION 7
  • ACTUARIAL SCIENCE 6
  • AGRICULTURAL EXTENSION 187
  • ARCHITECTURE 41
  • AGRICULTURAL SCIENCE 294
  • ANIMAL SCIENCE 49
  • AFRICAN LANGUAGES 7
  • BANKING AND FINANCE 1200
  • BUSINESS ADMINISTRATION 1300
  • BUSINESS MANAGEMENT 23
  • BUSINESS EDUCATION 16
  • BIBLICAL AND THEOLOGY 36
  • BIOCHEMISTRY 173
  • BREWING SCIENCE 5
  • BUILDING AND TECHNOLOGY 114
  • COMPUTER SCIENCE 1588
  • CHEMISTRY 36
  • COMMERCE 25
  • COMPUTER SCIENCE EDUCATION 19
  • CURRICULUM STUDIES 4
  • CIVIL ENGINEERING 84
  • CHEMICAL ENGINEERING 211
  • ECONOMICS 1229
  • EDUCATION 4023
  • ENGLISH 368
  • ELECTRICAL & ELECTRONICS 231
  • ENVIRONMENTAL SCIENCE 272
  • ESTATE MANAGEMENT 213
  • ENTREPRENEURSHIP 179
  • FOOD SCIENCE & TECH. 137
  • FINE & APPLIED ARTS 42
  • FISHERY & AQUACULTURE 62
  • FORESTRY & WILDLIFE 5
  • GUIDANCE AND COUNSELING 197
  • GEOGRAPHY 60
  • HUMAN RESOURCE MANAGEMENT 317
  • HEALTH & SEX EDUCATION 23
  • HOME ECONOMICS 50
  • HUMAN KINETICS 25
  • INFORMATION TECHNOLOGY 34
  • INDUSTRIAL CHEMISTRY 36
  • INSURANCE 141
  • INTERNATIONAL RELATIONS 117
  • ISLAMIC & ARABIC STUDIES 4
  • LIBRARY SCIENCE 214
  • MARKETING 998
  • MASS COMMUNICATION 1473
  • MATHEMATICS EDUCATION 9
  • MICRO BIOLOGY 162
  • MARINE AND TRANSPORT 6
  • MECHANICAL ENGINEERING 152
  • NURSING 115
  • OFFICE TECHNOLOGY 301
  • PUBLIC ADMINISTRATION 983
  • POLITICAL SCIENCE 590
  • PSYCHOLOGY 91
  • PHILOSOPHY 164
  • PROJECT MANAGEMENT 11
  • PHARMACY 21
  • PURCHASING & SUPPLY 300
  • PRODUCTION & OPERATIONS MGT. 22
  • PETROLEUM ENGINEERING 51
  • QUANTITY & SURVEYING 74
  • RELIGIOUS & CULTURAL STUDIES 19
  • SOCIAL STUDIES 10
  • SCIENCE LABOURATORY 253
  • SOIL SCIENCE 12
  • SOCIOLOGY 284
  • STATISTICS 126
  • THEATRE ARTS 15
  • TOURISM & HOSPITALITY 34
  • URBAN & REGIONAL PLANING 64
  • VOCATIONAL STUDIES 43
  • VETERINARY 2
  • EDUCATIONAL TECHNOLOGY 5
  • APPLIED SCIENCE 15
  • CRIMINOLOGY 70
  • COMPUTER ENGINEERING 51
  • HISTORY 124
  • INDUSTRIAL RELATIONS & PERSONNEL MANAGEMENT 150
  • PHYSIOLOGY 28
  • MEDICINE 131
  • SECRETARIAL STUDIES 131
  • PUBLIC HEALTH 99
  • NEW PROJECT TOPICS 25
  • Click Here For More Departments

Modal title

If you are yet to make payment, see the account details below and make payment immediately to get your complete project now.

GTBANK Account iprojectmaster

Bank: Guaranty Trust Bank (GTB)

Account Name: PRIMEDGE TECHNOLOGY

Account Number: 0116577831

Account Type: Current Account

Access Account iprojectmaster

Bank: Access Bank

Account Number: 1433892679

First Bank Account iprojectmaster

Bank: First Bank

Account Number: 3135995490

Account Type: Savings Account

Zenith Bank Account iprojectmaster

Bank: Zenith Bank

Account Number: 1014849427

UBA Account iprojectmaster

Account Number: 2115220494

Ghana Bank Account iprojectmaster

Bank: Ghana MTN MOMO

Account Name: DOUGLAS OSABUTEY

Account Number: 0553978005

all the numbers are changing, but what doesn't change is the relationship between x and y: y is always one more than twice x. That is, y=2x+1. Finding what doesn't change "tames" the situation. So, you have tamed this problem! Yay. And if you want a fancy mathematical name for things that don’t vary, we call these things "invariants." The number of messed-up recruits is invariant, even though they are all wiggling back and forth, trying to figure out which way is right!

3) Encourage generalizations

So, of course, the next question that comes to my mind is how to generalize what you’ve already discovered: there are 15 ways that 2 mistakes can be arranged in a line of 6 recruits. What about a different number of mistakes? Or a different number of recruits? Is there some way to predict? Or, alternatively, is there some way to predict how these 15 ways of making mistakes will play out as the recruits try to settle themselves down? Which direction interests you?

4) Inquire about reasoning and rigor

The students were looking at the number of ways the recruits could line up with 2 out of n faced the wrong way: Anyway, I had a question of my own. It looks like the number of possibilities increases pretty fast, as the number of recruits increases. For example, I counted 15 possibilities in your last set (the line of six). What I wonder is this: when the numbers get that large, how you can possibly know that you've found all the possibilities? (For example, I noticed that >>>><< is missing.) The question "How do I know I've counted 'em all?" is actually quite a big deal in mathematics, as mathematicians are often called upon to find ways of counting things that nobody has ever listed (exactly like the example you are working on).

The students responded by finding a pattern for generating the lineups in a meaningful order: The way that we can prove that we have all the possibilities is that we can just add the number of places that the second wrong person could be in. For example, if 2 are wrong in a line of 6, then the first one doesn’t move and you count the space in which the second one can move in. So for the line of six, it would be 5+4+3+2+1=15. That is the way to make sure that we have all the ways. Thanks so much for giving challenges. We enjoyed thinking!

5) Work towards proof

a) The group wrote the following: When we found out that 6 recruits had 15 different starting arrangements, we needed more information. We needed to figure out how many starting positions are there for a different number of recruits.

By drawing out the arrangements for 5 recruits and 7 recruits we found out that the number of starting arrangements for the recruit number before plus that recruit number before it would equal the number of starting arrangements for that number of recruits.

We also found out that if you divide the starting arrangements by the number of recruits there is a pattern.

To which the mentor replied: Wow! I don't think (in all the years I've been hanging around mathematics) I've ever seen anyone describe this particular pattern before! Really nice! If you already knew me, you'd be able to predict what I'm about to ask, but you don't, so I have to ask it: "But why?" That is, why is this pattern (the 6, 10, 15, 21, 28…) the pattern that you find for this circumstance (two recruits wrong in lines of lengths, 4, 5, 6, 7, 8…)? Answering that—explaining why you should get those numbers and why the pattern must continue for longer lines—is doing the kind of thing that mathematics is really about.

b) Responding to students studying a circular variation of raw recruits that never settled down: This is a really interesting conclusion! How can you show that it will always continue forever and that it doesn’t matter what the original arrangement was? Have you got a reason or did you try all the cases or…? I look forward to hearing more from you.

6) Distinguish between examples and reasons

a) You have very thoroughly dealt with finding the answer to the problem you posed—it really does seem, as you put it, "safe to say" how many there will be. Is there a way that you can show that that pattern must continue? I guess I’d look for some reason why adding the new recruit adds exactly the number of additional cases that you predict. If you could say how the addition of one new recruit depends on how long the line already is, you’d have a complete proof. Want to give that a try?

b) A student, working on Amida Kuji and having provided an example, wrote the following as part of a proof: In like manner, to be given each relationship of objects in an arrangement, you can generate the arrangement itself, for no two different arrangements can have the same object relationships. The mentor response points out the gap and offers ways to structure the process of extrapolating from the specific to the general: This statement is the same as your conjecture, but this is not a proof. You repeat your claim and suggest that the example serves as a model for a proof. If that is so, it is up to you to make the connections explicit. How might you prove that a set of ordered pairs, one per pair of objects forces a unique arrangement for the entire list? Try thinking about a given object (e.g., C) and what each of its ordered pairs tells us? Try to generalize from your example. What must be true for the set of ordered pairs? Are all sets of n C2 ordered pairs legal? How many sets of n C2 ordered pairs are there? Do they all lead to a particular arrangement? Your answers to these questions should help you work toward a proof of your conjecture.

9) Encourage extensions

What you’ve done—finding the pattern, but far more important, finding the explanation (and stating it so clearly)—is really great! (Perhaps I should say "finding and stating explanations like this is real mathematics"!) Yet it almost sounded as if you put it down at the very end, when you concluded "making our project mostly an interesting coincidence." This is a truly nice piece of work!

The question, now, is "What next?" You really have completely solved the problem you set out to solve: found the answer, and proved that you’re right!

I began looking back at the examples you gave, and noticed patterns in them that I had never seen before. At first, I started coloring parts red, because they just "stuck out" as noticeable and I wanted to see them better. Then, it occurred to me that I was coloring the recruits that were back-to-back, and that maybe I should be paying attention to the ones who were facing each other, as they were "where the action was," so I started coloring them pink. (In one case, I recopied your example to do the pinks.) To be honest, I’m not sure what I’m looking for, but there was such a clear pattern of the "action spot" moving around that I thought it might tell me something new. Anything come to your minds?

10) Build a Mathematical Community

I just went back to another paper and then came back to yours to look again. There's another pattern in the table. Add the recruits and the corresponding starting arrangements (for example, add 6 and 15) and you get the next number of starting arrangements. I don't know whether this, or your 1.5, 2, 2.5, 3, 3.5… pattern will help you find out why 6, 10, 15… make sense as answers, but they might. Maybe you can work with [your classmates] who made the other observation to try to develop a complete understanding of the problem.

11) Highlight Connections

Your rule—the (n-1)+(n-2)+(n-3)+… +3+2+1 part—is interesting all by itself, as it counts the number of dots in a triangle of dots. See how?

12) Wrap Up

This is really a very nice and complete piece of work: you've stated a problem, found a solution, and given a proof (complete explanation of why that solution must be correct). To wrap it up and give it the polish of a good piece of mathematical research, I'd suggest two things.

The first thing is to extend the idea to account for all but two mistakes and the (slightly trivial) one mistake and all but one mistake. (If you felt like looking at 3 and all but 3, that'd be nice, too, but it's more work—though not a ton—and the ones that I suggested are really not more work.)

The second thing I'd suggest is to write it all up in a way that would be understandable by someone who did not know the problem or your class: clear statement of the problem, the solution, what you did to get the solution, and the proof.

I look forward to seeing your masterpiece!

Advice for Keeping a Formal Mathematics Research Logbook

As part of your mathematics research experience, you will keep a mathematics research logbook. In this logbook, keep a record of everything you do and everything you read that relates to this work. Write down questions that you have as you are reading or working on the project. Experiment. Make conjectures. Try to prove your conjectures. Your journal will become a record of your entire mathematics research experience. Don’t worry if your writing is not always perfect. Often journal pages look rough, with notes to yourself, false starts, and partial solutions. However, be sure that you can read your own notes later and try to organize your writing in ways that will facilitate your thinking. Your logbook will serve as a record of where you are in your work at any moment and will be an invaluable tool when you write reports about your research.

Ideally, your mathematics research logbook should have pre-numbered pages. You can often find numbered graph paper science logs at office supply stores. If you can not find a notebook that has the pages already numbered, then the first thing you should do is go through the entire book putting numbers on each page using pen.

• Date each entry.

• Work in pen.

• Don’t erase or white out mistakes. Instead, draw a single line through what you would like ignored. There are many reasons for using this approach:

– Your notebook will look a lot nicer if it doesn’t have scribbled messes in it.

– You can still see what you wrote at a later date if you decide that it wasn’t a mistake after all.

– It is sometimes useful to be able to go back and see where you ran into difficulties.

– You’ll be able to go back and see if you already tried something so you won’t spend time trying that same approach again if it didn’t work.

• When you do research using existing sources, be sure to list the bibliographic information at the start of each section of notes you take. It is a lot easier to write down the citation while it is in front of you than it is to try to find it at a later date.

• Never tear a page out of your notebook. The idea is to keep a record of everything you have done. One reason for pre-numbering the pages is to show that nothing has been removed.

• If you find an interesting article or picture that you would like to include in your notebook, you can staple or tape it onto a page.

Advice for Keeping a Loose-Leaf Mathematics Research Logbook

Get yourself a good loose-leaf binder, some lined paper for notes, some graph paper for graphs and some blank paper for pictures and diagrams. Be sure to keep everything that is related to your project in your binder.

– Your notebook will look a lot nicer if it does not have scribbled messes in it.

• Be sure to keep everything related to your project. The idea is to keep a record of everything you have done.

• If you find an interesting article or picture that you would like to include in your notebook, punch holes in it and insert it in an appropriate section in your binder.

Making Mathematics Home | Mathematics Projects | Students | Teachers | Mentors | Parents | Hard Math Café |

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection

Logo of phenaturepg

Future themes of mathematics education research: an international survey before and during the pandemic

Arthur bakker.

1 Utrecht University, Utrecht, Netherlands

2 University of Delaware, Newark, DE USA

Linda Zenger

Before the pandemic (2019), we asked: On what themes should research in mathematics education focus in the coming decade? The 229 responses from 44 countries led to eight themes plus considerations about mathematics education research itself. The themes can be summarized as teaching approaches, goals, relations to practices outside mathematics education, teacher professional development, technology, affect, equity, and assessment. During the pandemic (November 2020), we asked respondents: Has the pandemic changed your view on the themes of mathematics education research for the coming decade? If so, how? Many of the 108 respondents saw the importance of their original themes reinforced (45), specified their initial responses (43), and/or added themes (35) (these categories were not mutually exclusive). Overall, they seemed to agree that the pandemic functions as a magnifying glass on issues that were already known, and several respondents pointed to the need to think ahead on how to organize education when it does not need to be online anymore. We end with a list of research challenges that are informed by the themes and respondents’ reflections on mathematics education research.

An international survey in two rounds

Around the time when Educational Studies in Mathematics (ESM) and the Journal for Research in Mathematics Education (JRME) were celebrating their 50th anniversaries, Arthur Bakker (editor of ESM) and Jinfa Cai (editor of JRME) saw a need to raise the following future-oriented question for the field of mathematics education research:

Q2019: On what themes should research in mathematics education focus in the coming decade?

To that end, we administered a survey with just this one question between June 17 and October 16, 2019.

When we were almost ready with the analysis, the COVID-19 pandemic broke out, and we were not able to present the results at the conferences we had planned to attend (NCTM and ICME in 2020). Moreover, with the world shaken up by the crisis, we wondered if colleagues in our field might think differently about the themes formulated for the future due to the pandemic. Hence, on November 26, 2020, we asked a follow-up question to those respondents who in 2019 had given us permission to approach them for elaboration by email:

Q2020: Has the pandemic changed your view on the themes of mathematics education research for the coming decade? If so, how?

In this paper, we summarize the responses to these two questions. Similar to Sfard’s ( 2005 ) approach, we start by synthesizing the voices of the respondents before formulating our own views. Some colleagues put forward the idea of formulating a list of key themes or questions, similar to the 23 unsolved mathematical problems that David Hilbert published around 1900 (cf. Schoenfeld, 1999 ). However, mathematics and mathematics education are very different disciplines, and very few people share Hilbert’s formalist view on mathematics; hence, we do not want to suggest that we could capture the key themes of mathematics education in a similar way. Rather, our overview of themes drawn from the survey responses is intended to summarize what is valued in our global community at the time of the surveys. Reasoning from these themes, we end with a list of research challenges that we see worth addressing in the future (cf. Stephan et al., 2015 ).

Methodological approach

Themes for the coming decade (2019).

We administered the 1-question survey through email lists that we were aware of (e.g., Becker, ICME, PME) and asked mathematics education researchers to spread it in their national networks. By October 16, 2019, we had received 229 responses from 44 countries across 6 continents (Table 1 ). Although we were happy with the larger response than Sfard ( 2005 ) received (74, with 28 from Europe), we do not know how well we have reached particular regions, and if potential respondents might have faced language or other barriers. We did offer a few Chinese respondents the option to write in Chinese because the second author offered to translate their emails into English. We also received responses in Spanish, which were translated for us.

Numbers of responses per continent (2019)

Note : When a respondent filled in two countries on two continents, we attributed half to one and the other half to the other continent

Ethical approval was given by the Ethical Review Board of the Faculties of Science and Geo-science of Utrecht University (Bèta L-19247). We asked respondents to indicate if they were willing to be quoted by name and if we were allowed to approach them for subsequent information. If they preferred to be named, we mention their name and country; otherwise, we write “anonymous.” In our selection of quotes, we have focused on content, not on where the response came from. On March 2, 2021, we approached all respondents who were quoted to double-check if they agreed to be quoted and named. One colleague preferred the quote and name to be deleted; three suggested small changes in wording; the others approved.

On September 20, 2019, the three authors met physically at Utrecht University to analyze the responses. After each individual proposal, we settled on a joint list of seven main themes (the first seven in Table ​ Table2), 2 ), which were neither mutually exclusive nor exhaustive. The third author (Zenger, then still a student in educational science) next color coded all parts of responses belonging to a category. These formed the basis for the frequencies and percentages presented in the tables and text. The first author (Bakker) then read all responses categorized by a particular code to identify and synthesize the main topics addressed within each code. The second author (Cai) read all of the survey responses and the response categories, and commented. After the initial round of analysis, we realized it was useful to add an eighth theme: assessment (including evaluation).

Percentages of responses mentioned in each theme (2019)

Note. Percentages do not add up to 100, because many respondents mentioned multiple themes

Moreover, given that a large number of respondents made comments about mathematics education research itself, we decided to summarize these separately. For analyzing this category of research, we used the following four labels to distinguish types of comments on our discipline of mathematics education research: theory, methodology, self-reflection (including ethical considerations), interdisciplinarity, and transdisciplinarity. We then summarized the responses per type of comment.

It has been a daunting and humbling experience to study the huge coverage and diversity of topics that our colleagues care about. Any categorization felt like a reduction of the wealth of ideas, and we are aware of the risks of “sorting things out” (Bowker & Star, 2000 ), which come with foregrounding particular challenges rather than others (Stephan et al., 2015 ). Yet the best way to summarize the bigger picture seemed by means of clustering themes and pointing to their relationships. As we identified these eight themes of mathematics education research for the future, a recurring question during the analysis was how to represent them. A list such as Table ​ Table2 2 does not do justice to the interrelations between the themes. Some relationships are very clear, for example, educational approaches (theme 2) working toward educational or societal goals (theme 1). Some themes are pervasive; for example, equity and (positive) affect are both things that educators want to achieve but also phenomena that are at stake during every single moment of learning and teaching. Diagrams we considered to represent such interrelationships were either too specific (limiting the many relevant options, e.g., a star with eight vertices that only link pairs of themes) or not specific enough (e.g., a Venn diagram with eight leaves such as the iPhone symbol for photos). In the end, we decided to use an image and collaborated with Elisabeth Angerer (student assistant in an educational sciences program), who eventually made the drawing in Fig. ​ Fig.1 1 to capture themes in their relationships.

An external file that holds a picture, illustration, etc.
Object name is 10649_2021_10049_Fig1_HTML.jpg

Artistic impression of the future themes

Has the pandemic changed your view? (2020)

On November 26, 2020, we sent an email to the colleagues who responded to the initial question and who gave permission to be approached by email. We cited their initial response and asked: “Has the pandemic changed your view on the themes of mathematics education research for the coming decade? If so, how?” We received 108 responses by January 12, 2021. The countries from which the responses came included China, Italy, and other places that were hit early by the COVID-19 virus. The length of responses varied from a single word response (“no”) to elaborate texts of up to 2215 words. Some people attached relevant publications. The median length of the responses was 87 words, with a mean length of 148 words and SD = 242. Zenger and Bakker classified them as “no changes” (9 responses) or “clearly different views” (8); the rest of the responses saw the importance of their initial themes reinforced (45), specified their initial responses (43), or added new questions or themes (35). These last categories were not mutually exclusive, because respondents could first state that they thought the initial themes were even more relevant than before and provide additional, more specified themes. We then used the same themes that had been identified in the first round and identified what was stressed or added in the 2020 responses.

The most frequently mentioned theme was what we labeled approaches to teaching (64% of the respondents, see Table ​ Table2). 2 ). Next was the theme of goals of mathematics education on which research should shed more light in the coming decade (54%). These goals ranged from specific educational goals to very broad societal ones. Many colleagues referred to mathematics education’s relationships with other practices (communities, institutions…) such as home, continuing education, and work. Teacher professional development is a key area for research in which the other themes return (what should students learn, how, how to assess that, how to use technology and ensure that students are interested?). Technology constitutes its own theme but also plays a key role in many other themes, just like affect. Another theme permeating other ones is what can be summarized as equity, diversity, and inclusion (also social justice, anti-racism, democratic values, and several other values were mentioned). These values are not just societal and educational goals but also drivers for redesigning teaching approaches, using technology, working on more just assessment, and helping learners gain access, become confident, develop interest, or even love for mathematics. To evaluate if approaches are successful and if goals have been achieved, assessment (including evaluation) is also mentioned as a key topic of research.

In the 2020 responses, many wise and general remarks were made. The general gist is that the pandemic (like earlier crises such as the economic crisis around 2008–2010) functioned as a magnifying glass on themes that were already considered important. Due to the pandemic, however, systemic societal and educational problems were said to have become better visible to a wider community, and urge us to think about the potential of a “new normal.”

Approaches to teaching

We distinguish specific teaching strategies from broader curricular topics.

Teaching strategies

There is a widely recognized need to further design and evaluate various teaching approaches. Among the teaching strategies and types of learning to be promoted that were mentioned in the survey responses are collaborative learning, critical mathematics education, dialogic teaching, modeling, personalized learning, problem-based learning, cross-curricular themes addressing the bigger themes in the world, embodied design, visualization, and interleaved learning. Note, however, that students can also enhance their mathematical knowledge independently from teachers or parents through web tutorials and YouTube videos.

Many respondents emphasized that teaching approaches should do more than promote cognitive development. How can teaching be entertaining or engaging? How can it contribute to the broader educational goals of developing students’ identity, contribute to their empowerment, and help them see the value of mathematics in their everyday life and work? We return to affect in Section 3.7 .

In the 2020 responses, we saw more emphasis on approaches that address modeling, critical thinking, and mathematical or statistical literacy. Moreover, respondents stressed the importance of promoting interaction, collaboration, and higher order thinking, which are generally considered to be more challenging in distance education. One approach worth highlighting is challenge-based education (cf. Johnson et al. 2009 ), because it takes big societal challenges as mentioned in the previous section as its motivation and orientation.

Approaches by which mathematics education can contribute to the aforementioned goals can be distinguished at various levels. Several respondents mentioned challenges around developing a coherent mathematics curriculum, smoothing transitions to higher school levels, and balancing topics, and also the typical overload of topics, the influence of assessment on what is taught, and what teachers can teach. For example, it was mentioned that mathematics teachers are often not prepared to teach statistics. There seems to be little research that helps curriculum authors tackle some of these hard questions as well as how to monitor reform (cf. Shimizu & Vithal, 2019 ). Textbook analysis is mentioned as a necessary research endeavor. But even if curricula within one educational system are reasonably coherent, how can continuity between educational systems be ensured (cf. Jansen et al., 2012 )?

In the 2020 responses, some respondents called for free high-quality curriculum resources. In several countries where Internet access is a problem in rural areas, a shift can be observed from online resources to other types of media such as radio and TV.

Goals of mathematics education

The theme of approaches is closely linked to that of the theme of goals. For example, as Fulvia Furinghetti (Italy) wrote: “It is widely recognized that critical thinking is a fundamental goal in math teaching. Nevertheless it is still not clear how it is pursued in practice.” We distinguish broad societal and more specific educational goals. These are often related, as Jane Watson (Australia) wrote: “If Education is to solve the social, cultural, economic, and environmental problems of today’s data-driven world, attention must be given to preparing students to interpret the data that are presented to them in these fields.”

Societal goals

Respondents alluded to the need for students to learn to function in the economy and in society more broadly. Apart from instrumental goals of mathematics education, some emphasized goals related to developing as a human being, for instance learning to see the mathematics in the world and develop a relation with the world. Mathematics education in these views should empower students to combat anti-expertise and post-fact tendencies. Several respondents mentioned even larger societal goals such as avoiding extinction as a human species and toxic nationalism, resolving climate change, and building a sustainable future.

In the second round of responses (2020), we saw much more emphasis on these bigger societal issues. The urgency to orient mathematics education (and its research) toward resolving these seemed to be felt more than before. In short, it was stressed that our planet needs to be saved. The big question is what role mathematics education can play in meeting these challenges.

Educational goals

Several respondents expressed a concern that the current goals of mathematics education do not reflect humanity’s and societies’ needs and interests well. Educational goals to be stressed more were mathematical literacy, numeracy, critical, and creative thinking—often with reference to the changing world and the planet being at risk. In particular, the impact of technology was frequently stressed, as this may have an impact on what people need to learn (cf. Gravemeijer et al., 2017 ). If computers can do particular things much better than people, what is it that students need to learn?

Among the most frequently mentioned educational goals for mathematics education were statistical literacy, computational and algorithmic thinking, artificial intelligence, modeling, and data science. More generally, respondents expressed that mathematics education should help learners deploy evidence, reasoning, argumentation, and proof. For example, Michelle Stephan (USA) asked:

What mathematics content should be taught today to prepare students for jobs of the future, especially given growth of the digital world and its impact on a global economy? All of the mathematics content in K-12 can be accomplished by computers, so what mathematical procedures become less important and what domains need to be explored more fully (e.g., statistics and big data, spatial geometry, functional reasoning, etc.)?

One challenge for research is that there is no clear methodology to arrive at relevant and feasible learning goals. Yet there is a need to choose and formulate such goals on the basis of research (cf. Van den Heuvel-Panhuizen, 2005 ).

Several of the 2020 responses mentioned the sometimes problematic way in which numbers, data, and graphs are used in the public sphere (e.g., Ernest, 2020 ; Kwon et al., 2021 ; Yoon et al., 2021 ). Many respondents saw their emphasis on relevant educational goals reinforced, for example, statistical and data literacy, modeling, critical thinking, and public communication. A few pandemic-specific topics were mentioned, such as exponential growth.

Relation of mathematics education to other practices

Many responses can be characterized as highlighting boundary crossing (Akkerman & Bakker, 2011 ) with disciplines or communities outside mathematics education, such as in science, technology, engineering, art, and mathematics education (STEM or STEAM); parents or families; the workplace; and leisure (e.g., drama, music, sports). An interesting example was the educational potential of mathematical memes—“humorous digital objects created by web users copying an existing image and overlaying a personal caption” (Bini et al., 2020 , p. 2). These boundary crossing-related responses thus emphasize the movements and connections between mathematics education and other practices.

In the 2020 responses, we saw that during the pandemic, the relationship between school and home has become much more important, because most students were (and perhaps still are) learning at home. Earlier research on parental involvement and homework (Civil & Bernier, 2006 ; de Abreu et al., 2006 ; Jackson, 2011 ) proves relevant in the current situation where many countries are still or again in lockdown. Respondents pointed to the need to monitor students and their work and to promote self-regulation. They also put more stress on the political, economic, and financial contexts in which mathematics education functions (or malfunctions, in many respondents’ views).

Teacher professional development

Respondents explicitly mentioned teacher professional development as an important domain of mathematics education research (including teacher educators’ development). For example, Loide Kapenda (Namibia) wrote, “I am supporting UNESCO whose idea is to focus on how we prepare teachers for the future we want.” (e.g., UNESCO, 2015 ) And, Francisco Rojas (Chile) wrote:

Although the field of mathematics education is broad and each time faced with new challenges (socio-political demands, new intercultural contexts, digital environments, etc.), all of them will be handled at school by the mathematics teacher, both in primary as well as in secondary education. Therefore, from my point of view, pre-service teacher education is one of the most relevant fields of research for the next decade, especially in developing countries.

It is evident from the responses that teaching mathematics is done by a large variety of people, not only by people who are trained as primary school teachers, secondary school mathematics teachers, or mathematicians but also parents, out-of-field teachers, and scientists whose primary discipline is not mathematics but who do use mathematics or statistics. How teachers of mathematics are trained varies accordingly. Respondents frequently pointed to the importance of subject-matter knowledge and particularly noted that many teachers seem ill-prepared to teach statistics (e.g., Lonneke Boels, the Netherlands).

Key questions were raised by several colleagues: “How to train mathematics teachers with a solid foundation in mathematics, positive attitudes towards mathematics teaching and learning, and wide knowledge base linking to STEM?” (anonymous); “What professional development, particularly at the post-secondary level, motivates changes in teaching practices in order to provide students the opportunities to engage with mathematics and be successful?” (Laura Watkins, USA); “How can mathematics educators equip students for sustainable, equitable citizenship? And how can mathematics education equip teachers to support students in this?” (David Wagner, Canada)

In the 2020 responses, it was clear that teachers are incredibly important, especially in the pandemic era. The sudden change to online teaching means that

higher requirements are put forward for teachers’ educational and teaching ability, especially the ability to carry out education and teaching by using information technology should be strengthened. Secondly, teachers’ ability to communicate and cooperate has been injected with new connotation. (Guangming Wang, China)

It is broadly assumed that education will stay partly online, though more so in higher levels of education than in primary education. This has implications for teachers, for instance, they will have to think through how they intend to coordinate teaching on location and online. Hence, one important focus for professional development is the use of technology.

Technology deserves to be called a theme in itself, but we want to emphasize that it ran through most of the other themes. First of all, some respondents argued that, due to technological advances in society, the societal and educational goals of mathematics education need to be changed (e.g., computational thinking to ensure employability in a technological society). Second, responses indicated that the changed goals have implications for the approaches in mathematics education. Consider the required curriculum reform and the digital tools to be used in it. Students do not only need to learn to use technology; the technology can also be used to learn mathematics (e.g., visualization, embodied design, statistical thinking). New technologies such as 3D printing, photo math, and augmented and virtual reality offer new opportunities for learning. Society has changed very fast in this respect. Third, technology is suggested to assist in establishing connections with other practices , such as between school and home, or vocational education and work, even though there is a great disparity in how successful these connections are.

In the 2020 responses, there was great concern about the current digital divide (cf. Hodgen et al., 2020 ). The COVID-19 pandemic has thus given cause for mathematics education research to understand better how connections across educational and other practices can be improved with the help of technology. Given the unequal distribution of help by parents or guardians, it becomes all the more important to think through how teachers can use videos and quizzes, how they can monitor their students, how they can assess them (while respecting privacy), and how one can compensate for the lack of social, gestural, and embodied interaction that is possible when being together physically.

Where mobile technology was considered very innovative before 2010, smartphones have become central devices in mathematics education in the pandemic with its reliance on distance learning. Our direct experience showed that phone applications such as WhatsApp and WeChat have become key tools in teaching and learning mathematics in many rural areas in various continents where few people have computers (for a report on podcasts distributed through WhatsApp, community loudspeakers, and local radio stations in Colombia, see Saenz et al., 2020 ).

Equity, diversity, and inclusion

Another cross-cutting theme can be labeled “equity, diversity, and inclusion.” We use this triplet to cover any topic that highlights these and related human values such as equality, social and racial justice, social emancipation, and democracy that were also mentioned by respondents (cf. Dobie & Sherin, 2021 ). In terms of educational goals , many respondents stressed that mathematics education should be for all students, including those who have special needs, who live in poverty, who are learning the instruction language, who have a migration background, who consider themselves LGBTQ+, have a traumatic or violent history, or are in whatever way marginalized. There is broad consensus that everyone should have access to high-quality mathematics education. However, as Niral Shah (USA) notes, less attention has been paid to “how phenomena related to social markers (e.g., race, class, gender) interact with phenomena related to the teaching and learning of mathematical content.”

In terms of teaching approaches , mathematics education is characterized by some respondents from particular countries as predominantly a white space where some groups feel or are excluded (cf. Battey, 2013 ). There is a general concern that current practices of teaching mathematics may perpetuate inequality, in particular in the current pandemic. In terms of assessment , mathematics is too often used or experienced as a gatekeeper rather than as a powerful resource (cf. Martin et al., 2010 ). Steve Lerman (UK) “indicates that understanding how educational opportunities are distributed inequitably, and in particular how that manifests in each end every classroom, is a prerequisite to making changes that can make some impact on redistribution.” A key research aim therefore is to understand what excludes students from learning mathematics and what would make mathematics education more inclusive (cf. Roos, 2019 ). And, what does professional development of teachers that promotes equity look like?

In 2020, many respondents saw their emphasis on equity and related values reinforced in the current pandemic with its risks of a digital divide, unequal access to high-quality mathematics education, and unfair distribution of resources. A related future research theme is how the so-called widening achievement gaps can be remedied (cf. Bawa, 2020 ). However, warnings were also formulated that thinking in such deficit terms can perpetuate inequality (cf. Svensson et al., 2014 ). A question raised by Dor Abrahamson (USA) is, “What roles could digital technology play, and in what forms, in restoring justice and celebrating diversity?”

Though entangled with many other themes, affect is also worth highlighting as a theme in itself. We use the term affect in a very broad sense to point to psychological-social phenomena such as emotion, love, belief, attitudes, interest, curiosity, fun, engagement, joy, involvement, motivation, self-esteem, identity, anxiety, alienation, and feeling of safety (cf. Cobb et al., 2009 ; Darragh, 2016 ; Hannula, 2019 ; Schukajlow et al., 2017 ). Many respondents emphasized the importance of studying these constructs in relation to (and not separate from) what is characterized as cognition. Some respondents pointed out that affect is not just an individual but also a social phenomenon, just like learning (cf. Chronaki, 2019 ; de Freitas et al., 2019 ; Schindler & Bakker, 2020 ).

Among the educational goals of mathematics education, several participants mentioned the need to generate and foster interest in mathematics. In terms of approaches , much emphasis was put on the need to avoid anxiety and alienation and to engage students in mathematical activity.

In the 2020 responses, more emphasis was put on the concern about alienation, which seems to be of special concern when students are socially distanced from peers and teachers as to when teaching takes place only through technology . What was reiterated in the 2020 responses was the importance of students’ sense of belonging in a mathematics classroom (cf. Horn, 2017 )—a topic closely related to the theme of equity, diversity, and inclusion discussed before.

Assessment and evaluation were not often mentioned explicitly, but they do not seem less important than the other related themes. A key challenge is to assess what we value rather than valuing what we assess. In previous research, the assessment of individual students has received much attention, but what seems to be neglected is the evaluation of curricula. As Chongyang Wang (China) wrote, “How to evaluate the curriculum reforms. When we pay much energy in reforming our education and curriculum, do we imagine how to ensure it will work and there will be pieces of evidence found after the new curricula are carried out? How to prove the reforms work and matter?” (cf. Shimizu & Vithal, 2019 )

In the 2020 responses, there was an emphasis on assessment at a distance. Distance education generally is faced with the challenge of evaluating student work, both formatively and summatively. We predict that so-called e-assessment, along with its privacy challenges, will generate much research interest in the near future (cf. Bickerton & Sangwin, 2020 ).

Mathematics education research itself

Although we only asked for future themes, many respondents made interesting comments about research in mathematics education and its connections with other disciplines and practices (such as educational practice, policy, home settings). We have grouped these considerations under the subheadings of theory, methodology, reflection on our discipline, and interdisciplinarity and transdisciplinarity. As with the previous categorization into themes, we stress that these four types are not mutually exclusive as theoretical and methodological considerations can be intricately intertwined (Radford, 2008 ).

Several respondents expressed their concern about the fragmentation and diversity of theories used in mathematics education research (cf. Bikner-Ahsbahs & Prediger, 2014 ). The question was raised how mathematics educators can “work together to obtain valid, reliable, replicable, and useful findings in our field” and “How, as a discipline, can we encourage sustained research on core questions using commensurable perspectives and methods?” (Keith Weber, USA). One wish was “comparing theoretical perspectives for explanatory power” (K. Subramaniam, India). At the same time, it was stressed that “we cannot continue to pretend that there is just one culture in the field of mathematics education, that all the theoretical framework may be applied in whichever culture and that results are universal” (Mariolina Bartolini Bussi, Italy). In addition, the wish was expressed to deepen theoretical notions such as numeracy, equity, and justice as they play out in mathematics education.

Methodology

Many methodological approaches were mentioned as potentially useful in mathematics education research: randomized studies, experimental studies, replication, case studies, and so forth. Particular attention was paid to “complementary methodologies that bridge the ‘gap’ between mathematics education research and research on mathematical cognition” (Christian Bokhove, UK), as, for example, done in Gilmore et al. ( 2018 ). Also, approaches were mentioned that intend to bridge the so-called gap between educational practice and research, such as lesson study and design research. For example, Kay Owens (Australia) pointed to the challenge of studying cultural context and identity: “Such research requires a multi-faceted research methodology that may need to be further teased out from our current qualitative (e.g., ethnographic) and quantitative approaches (‘paper and pencil’ (including computing) testing). Design research may provide further possibilities.”

Francisco Rojas (Chile) highlighted the need for more longitudinal and cross-sectional research, in particular in the context of teacher professional development:

It is not enough to investigate what happens in pre-service teacher education but understand what effects this training has in the first years of the professional career of the new teachers of mathematics, both in primary and secondary education. Therefore, increasingly more longitudinal and cross-sectional studies will be required to understand the complexity of the practice of mathematics teachers, how the professional knowledge that articulates the practice evolves, and what effects have the practice of teachers on the students’ learning of mathematics.

Reflection on our discipline

Calls were made for critical reflection on our discipline. One anonymous appeal was for more self-criticism and scientific modesty: Is research delivering, or is it drawing away good teachers from teaching? Do we do research primarily to help improve mathematics education or to better understand phenomena? (cf. Proulx & Maheux, 2019 ) The general gist of the responses was a sincere wish to be of value to the world and mathematics education more specifically and not only do “research for the sake of research” (Zahra Gooya, Iran). David Bowers (USA) expressed several reflection-inviting views about the nature of our discipline, for example:

  • We must normalize (and expect) the full taking up the philosophical and theoretical underpinnings of all of our work (even work that is not considered “philosophical”). Not doing so leads to uncritical analysis and implications.
  • We must develop norms wherein it is considered embarrassing to do “uncritical” research.
  • There is no such thing as “neutral.” Amongst other things, this means that we should be cultivating norms that recognize the inherent political nature of all work, and norms that acknowledge how superficially “neutral” work tends to empower the oppressor.
  • We must recognize the existence of but not cater to the fragility of privilege.

In terms of what is studied, some respondents felt that the mathematics education research “literature has been moving away from the original goals of mathematics education. We seem to have been investigating everything but the actual learning of important mathematics topics.” (Lyn English, Australia) In terms of the nature of our discipline, Taro Fujita (UK) argued that our discipline can be characterized as a design science, with designing mathematical learning environments as the core of research activities (cf. Wittmann, 1995 ).

A tension that we observe in different views is the following: On the one hand, mathematics education research has its origin in helping teachers teach particular content better. The need for such so-called didactical, topic-specific research is not less important today but perhaps less fashionable for funding schemes that promote innovative, ground-breaking research. On the other hand, over time it has become clear that mathematics education is a multi-faceted socio-cultural and political endeavor under the influence of many local and global powers. It is therefore not surprising that the field of mathematics education research has expanded so as to include an increasingly wide scope of themes that are at stake, such as the marginalization of particular groups. We therefore highlight Niral Shah’s (USA) response that “historically, these domains of research [content-specific vs socio-political] have been decoupled. The field would get closer to understanding the experiences of minoritized students if we could connect these lines of inquiry.”

Another interesting reflective theme was raised by Nouzha El Yacoubi (Morocco): To what extent can we transpose “research questions from developed to developing countries”? As members of the plenary panel at PME 2019 (e.g., Kazima, 2019 ; Kim, 2019 ; Li, 2019 ) conveyed well, adopting interventions that were successful in one place in another place is far from trivial (cf. Gorard, 2020 ).

Juan L. Piñeiro (Spain in 2019, Chile in 2020) highlighted that “mathematical concepts and processes have different natures. Therefore, can it be characterized using the same theoretical and methodological tools?” More generally, one may ask if our theories and methodologies—often borrowed from other disciplines—are well suited to the ontology of our own discipline. A discussion started by Niss ( 2019 ) on the nature of our discipline, responded to by Bakker ( 2019 ) and Cai and Hwang ( 2019 ), seems worth continuing.

An important question raised in several comments is how close research should be to existing curricula. One respondent (Benjamin Rott, Germany) noted that research on problem posing often does “not fit into school curricula.” This makes the application of research ideas and findings problematic. However, one could argue that research need not always be tied to existing (local) educational contexts. It can also be inspirational, seeking principles of what is possible (and how) with a longer-term view on how curricula may change in the future. One option is, as Simon Zell (Germany) suggests, to test designs that cover a longer timeframe than typically done. Another way to bridge these two extremes is “collaboration between teachers and researchers in designing and publishing research” (K. Subramaniam, India) as is promoted by facilitating teachers to do PhD research (Bakx et al., 2016 ).

One of the responding teacher-researchers (Lonneke Boels, the Netherlands) expressed the wish that research would become available “in a more accessible form.” This wish raises the more general questions of whose responsibility it is to do such translation work and how to communicate with non-researchers. Do we need a particular type of communication research within mathematics education to learn how to convey particular key ideas or solid findings? (cf. Bosch et al., 2017 )

Interdisciplinarity and transdisciplinarity

Many respondents mentioned disciplines which mathematics education research can learn from or should collaborate with (cf. Suazo-Flores et al., 2021 ). Examples are history, mathematics, philosophy, psychology, psychometry, pedagogy, educational science, value education (social, emotional), race theory, urban education, neuroscience/brain research, cognitive science, and computer science didactics. “A big challenge here is how to make diverse experts approach and talk to one another in a productive way.” (David Gómez, Chile)

One of the most frequently mentioned disciplines in relation to our field is history. It is a common complaint in, for instance, the history of medicine that historians accuse medical experts of not knowing historical research and that medical experts accuse historians of not understanding the medical discipline well enough (Beckers & Beckers, 2019 ). This tension raises the question who does and should do research into the history of mathematics or of mathematics education and to what broader purpose.

Some responses go beyond interdisciplinarity, because resolving the bigger issues such as climate change and a more equitable society require collaboration with non-researchers (transdisciplinarity). A typical example is the involvement of educational practice and policy when improving mathematics education (e.g., Potari et al., 2019 ).

Let us end this section with a word of hope, from an anonymous respondent: “I still believe (or hope?) that the pandemic, with this making-inequities-explicit, would help mathematics educators to look at persistent and systemic inequalities more consistently in the coming years.” Having learned so much in the past year could indeed provide an opportunity to establish a more equitable “new normal,” rather than a reversion to the old normal, which one reviewer worried about.

The themes in their coherence: an artistic impression

As described above, we identified eight themes of mathematics education research for the future, which we discussed one by one. The disadvantage of this list-wise discussion is that the entanglement of the themes is backgrounded. To compensate for that drawback, we here render a brief interpretation of the drawing of Fig. ​ Fig.1. 1 . While doing so, we invite readers to use their own creative imagination and perhaps use the drawing for other purposes (e.g., ask researchers, students, or teachers: Where would you like to be in this landscape? What mathematical ideas do you spot?). The drawing mainly focuses on the themes that emerged from the first round of responses but also hints at experiences from the time of the pandemic, for instance distance education. In Appendix 1 , we specify more of the details in the drawing and we provide a link to an annotated image (available at https://www.fisme.science.uu.nl/toepassingen/28937/ ).

The boat on the river aims to represent teaching approaches. The hand drawing of the boat hints at the importance of educational design: A particular approach is being worked out. On the boat, a teacher and students work together toward educational and societal goals, further down the river. The graduation bridge is an intermediate educational goal to pass, after which there are many paths leading to other goals such as higher education, citizenship, and work in society. Relations to practices outside mathematics education are also shown. In the left bottom corner, the house and parents working and playing with children represent the link of education with the home situation and leisure activity.

The teacher, represented by the captain in the foreground of the ship, is engaged in professional development, consulting a book, but also learning by doing (cf. Bakkenes et al., 2010 , on experimenting, using resources, etc.). Apart from graduation, there are other types of goals for teachers and students alike, such as equity, positive affect, and fluent use of technology. During their journey (and partially at home, shown in the left bottom corner), students learn to orient themselves in the world mathematically (e.g., fractal tree, elliptical lake, a parabolic mountain, and various platonic solids). On their way toward various goals, both teacher and students use particular technology (e.g., compass, binoculars, tablet, laptop). The magnifying glass (representing research) zooms in on a laptop screen that portrays distance education, hinting at the consensus that the pandemic magnifies some issues that education was already facing (e.g., the digital divide).

Equity, diversity, and inclusion are represented with the rainbow, overarching everything. On the boat, students are treated equally and the sailing practice is inclusive in the sense that all perform at their own level—getting the support they need while contributing meaningfully to the shared activity. This is at least what we read into the image. Affect is visible in various ways. First of all, the weather represents moods in general (rainy and dark side on the left; sunny bright side on the right). Second, the individual students (e.g., in the crow’s nest) are interested in, anxious about, and attentive to the things coming up during their journey. They are motivated to engage in all kinds of tasks (handling the sails, playing a game of chance with a die, standing guard in the crow’s nest, etc.). On the bridge, the graduates’ pride and happiness hints at positive affect as an educational goal but also represents the exam part of the assessment. The assessment also happens in terms of checks and feedback on the boat. The two people next to the house (one with a camera, one measuring) can be seen as assessors or researchers observing and evaluating the progress on the ship or the ship’s progress.

More generally, the three types of boats in the drawing represent three different spaces, which Hannah Arendt ( 1958 ) would characterize as private (paper-folded boat near the boy and a small toy boat next to the girl with her father at home), public/political (ships at the horizon), and the in-between space of education (the boat with the teacher and students). The students and teacher on the boat illustrate school as a special pedagogic form. Masschelein and Simons ( 2019 ) argue that the ancient Greek idea behind school (σχολή, scholè , free time) is that students should all be treated as equal and should all get equal opportunities. At school, their descent does not matter. At school, there is time to study, to make mistakes, without having to work for a living. At school, they learn to collaborate with others from diverse backgrounds, in preparation for future life in the public space. One challenge of the lockdown situation as a consequence of the pandemic is how to organize this in-between space in a way that upholds its special pedagogic form.

Research challenges

Based on the eight themes and considerations about mathematics education research itself, we formulate a set of research challenges that strike us as deserving further discussion (cf. Stephan et al., 2015 ). We do not intend to suggest these are more important than others or that some other themes are less worthy of investigation, nor do we suggest that they entail a research agenda (cf. English, 2008 ).

Aligning new goals, curricula, and teaching approaches

There seems to be relatively little attention within mathematics education research for curricular issues, including topics such as learning goals, curriculum standards, syllabi, learning progressions, textbook analysis, curricular coherence, and alignment with other curricula. Yet we feel that we as mathematics education researchers should care about these topics as they may not necessarily be covered by other disciplines. For example, judging from Deng’s ( 2018 ) complaint about the trends in the discipline of curriculum studies, we cannot assume scholars in that field to address issues specific to the mathematics-focused curriculum (e.g., the Journal of Curriculum Studies and Curriculum Inquiry have published only a limited number of studies on mathematics curricula).

Learning goals form an important element of curricula or standards. It is relatively easy to formulate important goals in general terms (e.g., critical thinking or problem solving). As a specific example, consider mathematical problem posing (Cai & Leikin, 2020 ), which curriculum standards have specifically pointed out as an important educational goal—developing students’ problem-posing skills. Students should be provided opportunities to formulate their own problems based on situations. However, there are few problem-posing activities in current mathematics textbooks and classroom instruction (Cai & Jiang, 2017 ). A similar observation can be made about problem solving in Dutch primary textbooks (Kolovou et al., 2009 ). Hence, there is a need for researchers and educators to align problem posing in curriculum standards, textbooks, classroom instruction, and students’ learning.

The challenge we see for mathematics education researchers is to collaborate with scholars from other disciplines (interdisciplinarity) and with non-researchers (transdisciplinarity) in figuring out how the desired societal and educational goals can be shaped in mathematics education. Our discipline has developed several methodological approaches that may help in formulating learning goals and accompanying teaching approaches (cf. Van den Heuvel-Panhuizen, 2005 ), including epistemological analyses (Sierpinska, 1990 ), historical and didactical phenomenology (Bakker & Gravemeijer, 2006 ; Freudenthal, 1986 ), and workplace studies (Bessot & Ridgway, 2000 ; Hoyles et al., 2001 ). However, how should the outcomes of such research approaches be weighed against each other and combined to formulate learning goals for a balanced, coherent curriculum? What is the role of mathematics education researchers in relation to teachers, policymakers, and other stakeholders (Potari et al., 2019 )? In our discipline, we seem to lack a research-informed way of arriving at the formulation of suitable educational goals without overloading the curricula.

Researching mathematics education across contexts

Though methodologically and theoretically challenging, it is of great importance to study learning and teaching mathematics across contexts. After all, students do not just learn at school; they can also participate in informal settings (Nemirovsky et al., 2017 ), online forums, or affinity networks (Ito et al., 2018 ) where they may share for instance mathematical memes (Bini et al., 2020 ). Moreover, teachers are not the only ones teaching mathematics: Private tutors, friends, parents, siblings, or other relatives can also be involved in helping children with their mathematics. Mathematics learning could also be situated on streets or in museums, homes, and other informal settings. This was already acknowledged before 2020, but the pandemic has scattered learners and teachers away from the typical central school locations and thus shifted the distribution of labor.

In particular, physical and virtual spaces of learning have been reconfigured due to the pandemic. Issues of timing also work differently online, for example, if students can watch online lectures or videos whenever they like (asynchronously). Such reconfigurations of space and time also have an effect on the rhythm of education and hence on people’s energy levels (cf. Lefebvre, 2004 ). More specifically, the reconfiguration of the situation has affected many students’ levels of motivation and concentration (e.g., Meeter et al., 2020 ). As Engelbrecht et al. ( 2020 ) acknowledged, the pandemic has drastically changed the teaching and learning model as we knew it. It is quite possible that some existing theories about teaching and learning no longer apply in the same way. An interesting question is whether and how existing theoretical frameworks can be adjusted or whether new theoretical orientations need to be developed to better understand and promote productive ways of blended or online teaching, across contexts.

Focusing teacher professional development

Professional development of teachers and teacher educators stands out from the survey as being in need of serious investment. How can teachers be prepared for the unpredictable, both in terms of beliefs and actions? During the pandemic, teachers have been under enormous pressure to make quick decisions in redesigning their courses, to learn to use new technological tools, to invent creative ways of assessment, and to do what was within their capacity to provide opportunities to their students for learning mathematics—even if technological tools were limited (e.g., if students had little or no computer or internet access at home). The pressure required both emotional adaption and instructional adjustment. Teachers quickly needed to find useful information, which raises questions about the accessibility of research insights. Given the new situation, limited resources, and the uncertain unfolding of education after lockdowns, focusing teacher professional development on necessary and useful topics will need much attention. In particular, there is a need for longitudinal studies to investigate how teachers’ learning actually affects teachers’ classroom instruction and students’ learning.

In the surveys, respondents mainly referred to teachers as K-12 school mathematics teachers, but some also stressed the importance of mathematics teacher educators (MTEs). In addition to conducting research in mathematics education, MTEs are acting in both the role of teacher educators and of mathematics teachers. There has been increased research on MTEs as requiring professional development (Goos & Beswick, 2021 ). Within the field of mathematics education, there is an emerging need and interest in how mathematics teacher educators themselves learn and develop. In fact, the changing situation also provides an opportunity to scrutinize our habitual ways of thinking and become aware of what Jullien ( 2018 ) calls the “un-thought”: What is it that we as educators and researchers have not seen or thought about so much about that the sudden reconfiguration of education forces us to reflect upon?

Using low-tech resources

Particular strands of research focus on innovative tools and their applications in education, even if they are at the time too expensive (even too labor intensive) to use at large scale. Such future-oriented studies can be very interesting given the rapid advances in technology and attractive to funding bodies focusing on innovation. Digital technology has become ubiquitous, both in schools and in everyday life, and there is already a significant body of work capitalizing on aspects of technology for research and practice in mathematics education.

However, as Cai et al. ( 2020 ) indicated, technology advances so quickly that addressing research problems may not depend so much on developing a new technological capability as on helping researchers and practitioners learn about new technologies and imagine effective ways to use them. Moreover, given the millions of students in rural areas who during the pandemic have only had access to low-tech resources such as podcasts, radio, TV, and perhaps WhatsApp through their parents’ phones, we would like to see more research on what learning, teaching, and assessing mathematics through limited tools such as Whatsapp or WeChat look like and how they can be improved. In fact, in China, a series of WeChat-based mini-lessons has been developed and delivered through the WeChat video function during the pandemic. Even when the pandemic is under control, mini-lessons are still developed and circulated through WeChat. We therefore think it is important to study the use and influence of low-tech resources in mathematics education.

Staying in touch online

With the majority of students learning at home, a major ongoing challenge for everyone has been how to stay in touch with each other and with mathematics. With less social interaction, without joint attention in the same physical space and at the same time, and with the collective only mediated by technology, becoming and staying motivated to learn has been a widely felt challenge. It is generally expected that in the higher levels of education, more blended or distant learning elements will be built into education. Careful research on the affective, embodied, and collective aspects of learning and teaching mathematics is required to overcome eventually the distance and alienation so widely experienced in online education. That is, we not only need to rethink social interactions between students and/or teachers in different settings but must also rethink how to engage and motivate students in online settings.

Studying and improving equity without perpetuating inequality

Several colleagues have warned, for a long time, that one risk of studying achievement gaps, differences between majority and minority groups, and so forth can also perpetuate inequity. Admittedly, pinpointing injustice and the need to invest in particular less privileged parts of education is necessary to redirect policymakers’ and teachers’ attention and gain funding. However, how can one reorient resources without stigmatizing? For example, Svensson et al. ( 2014 ) pointed out that research findings can fuel political debates about groups of people (e.g., parents with a migration background), who then may feel insecure about their own capacities. A challenge that we see is to identify and understand problematic situations without legitimizing problematic stereotyping (Hilt, 2015 ).

Furthermore, the field of mathematics education research does not have a consistent conceptualization of equity. There also seem to be regional differences: It struck us that equity is the more common term in the responses from the Americas, whereas inclusion and diversity were more often mentioned in the European responses. Future research will need to focus on both the conceptualization of equity and on improving equity and related values such as inclusion.

Assessing online

A key challenge is how to assess online and to do so more effectively. This challenge is related to both privacy, ethics, and performance issues. It is clear that online assessment may have significant advantages to assess student mathematics learning, such as more flexibility in test-taking and fast scoring. However, many teachers have faced privacy concerns, and we also have the impression that in an online environment it is even more challenging to successfully assess what we value rather than merely assessing what is relatively easy to assess. In particular, we need to systematically investigate any possible effect of administering assessments online as researchers have found a differential effect of online assessment versus paper-and-pencil assessment (Backes & Cowan, 2019 ). What further deserves careful ethical attention is what happens to learning analytics data that can and are collected when students work online.

Doing and publishing interdisciplinary research

When analyzing the responses, we were struck by a discrepancy between what respondents care about and what is typically researched and published in our monodisciplinary journals. Most of the challenges mentioned in this section require interdisciplinary or even transdisciplinary approaches (see also Burkhardt, 2019 ).

An overarching key question is: What role does mathematics education research play in addressing the bigger and more general challenges mentioned by our respondents? The importance of interdisciplinarity also raises a question about the scope of journals that focus on mathematics education research. Do we need to broaden the scope of monodisciplinary journals so that they can publish important research that combines mathematics education research with another disciplinary perspective? As editors, we see a place for interdisciplinary studies as long as there is one strong anchor in mathematics education research. In fact, there are many researchers who do not identify themselves as mathematics education researchers but who are currently doing high-quality work related to mathematics education in fields such as educational psychology and the cognitive and learning sciences. Encouraging the reporting of high-quality mathematics education research from a broader spectrum of researchers would serve to increase the impact of the mathematics education research journals in the wider educational arena. This, in turn, would serve to encourage further collaboration around mathematics education issues from various disciplines. Ultimately, mathematics education research journals could act as a hub for interdisciplinary collaboration to address the pressing questions of how mathematics is learned and taught.

Concluding remarks

In this paper, based on a survey conducted before and during the pandemic, we have examined how scholars in the field of mathematics education view the future of mathematics education research. On the one hand, there are no major surprises about the areas we need to focus on in the future; the themes are not new. On the other hand, the responses also show that the areas we have highlighted still persist and need further investigation (cf. OECD, 2020 ). But, there are a few areas, based on both the responses of the scholars and our own discussions and views, that stand out as requiring more attention. For example, we hope that these survey results will serve as propelling conversation about mathematics education research regarding online assessment and pedagogical considerations for virtual teaching.

The survey results are limited in two ways. The set of respondents to the survey is probably not representative of all mathematics education researchers in the world. In that regard, perhaps scholars in each country could use the same survey questions to survey representative samples within each country to understand how the scholars in that country view future research with respect to regional needs. The second limitation is related to the fact that mathematics education is a very culturally dependent field. Cultural differences in the teaching and learning of mathematics are well documented. Given the small numbers of responses from some continents, we did not break down the analysis for regional comparison. Representative samples from each country would help us see how scholars from different countries view research in mathematics education; they will add another layer of insights about mathematics education research to complement the results of the survey presented here. Nevertheless, we sincerely hope that the findings from the surveys will serve as a discussion point for the field of mathematics education to pursue continuous improvement.

Acknowledgments

We thank Anna Sfard for her advice on the survey, based on her own survey published in Sfard ( 2005 ). We are grateful for Stephen Hwang’s careful copyediting for an earlier version of the manuscript. Thanks also to Elisabeth Angerer, Elske de Waal, Paul Ernest, Vilma Mesa, Michelle Stephan, David Wagner, and anonymous reviewers for their feedback on earlier drafts.

Appendix 1: Explanation of Fig. ​ Fig.1 1

An external file that holds a picture, illustration, etc.
Object name is 10649_2021_10049_Figa_HTML.jpg

We have divided Fig. ​ Fig.1 1 in 12 rectangles called A1 (bottom left) up to C4 (top right) to explain the details (for image annotation go to https://www.fisme.science.uu.nl/toepassingen/28937 )

Declarations

In line with the guidelines of the Code of Publication Ethics (COPE), we note that the review process of this article was blinded to the authors.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

  • Akkerman SF, Bakker A. Boundary crossing and boundary objects. Review of Educational Research. 2011; 81 (2):132–169. doi: 10.3102/0034654311404435. [ CrossRef ] [ Google Scholar ]
  • Arendt, H. (1958/1998). The human condition (2nd ed.). University of Chicago Press.
  • Backes B, Cowan J. Is the pen mightier than the keyboard? The effect of online testing on measured student achievement. Economics of Education Review. 2019; 68 :89–103. doi: 10.1016/j.econedurev.2018.12.007. [ CrossRef ] [ Google Scholar ]
  • Bakkenes, I., Vermunt, J. D., & Wubbels, T. (2010). Teacher learning in the context of educational innovation: Learning activities and learning outcomes of experienced teachers. Learning and Instruction , 20 (6), 533–548. 10.1016/j.learninstruc.2009.09.001
  • Bakker A. What is worth publishing? A response to Niss. For the Learning of Mathematics. 2019; 39 (3):43–45. [ Google Scholar ]
  • Bakker A, Gravemeijer KP. An historical phenomenology of mean and median. Educational Studies in Mathematics. 2006; 62 (2):149–168. doi: 10.1007/s10649-006-7099-8. [ CrossRef ] [ Google Scholar ]
  • Bakx A, Bakker A, Koopman M, Beijaard D. Boundary crossing by science teacher researchers in a PhD program. Teaching and Teacher Education. 2016; 60 :76–87. doi: 10.1016/j.tate.2016.08.003. [ CrossRef ] [ Google Scholar ]
  • Battey, D. (2013). Access to mathematics: “A possessive investment in whiteness”. Curriculum Inquiry , 43 (3), 332–359.
  • Bawa, P. (2020). Learning in the age of SARS-COV-2: A quantitative study of learners’ performance in the age of emergency remote teaching. Computers and Education Open , 1 , 100016. 10.1016/j.caeo.2020.100016
  • Beckers D, Beckers A. ‘Newton was heel exact wetenschappelijk – ook in zijn chemische werk’. Nederlandse wetenschapsgeschiedenis in niet-wetenschapshistorische tijdschriften, 1977–2017. Studium. 2019; 12 (4):185–197. doi: 10.18352/studium.10203. [ CrossRef ] [ Google Scholar ]
  • Bessot, A., & Ridgway, J. (Eds.). (2000). Education for mathematics in the workplace . Springer.
  • Bickerton, R. T., & Sangwin, C. (2020). Practical online assessment of mathematical proof. arXiv preprint:2006.01581 . https://arxiv.org/pdf/2006.01581.pdf .
  • Bikner-Ahsbahs, A., & Prediger, S. (Eds.). (2014). Networking of theories as a research practice in mathematics education . Springer.
  • Bini, G., Robutti, O., & Bikner-Ahsbahs, A. (2020). Maths in the time of social media: Conceptualizing the Internet phenomenon of mathematical memes. International Journal of Mathematical Education in Science and Technology , 1–40. 10.1080/0020739x.2020.1807069
  • Bosch, M., Dreyfus, T., Primi, C., & Shiel, G. (2017, February). Solid findings in mathematics education: What are they and what are they good for? CERME 10 . Ireland: Dublin https://hal.archives-ouvertes.fr/hal-01849607
  • Bowker, G. C., & Star, S. L. (2000). Sorting things out: Classification and its consequences . MIT Press. 10.7551/mitpress/6352.001.0001
  • Burkhardt, H. (2019). Improving policy and practice. Educational Designer , 3 (12) http://www.educationaldesigner.org/ed/volume3/issue12/article46/
  • Cai J, Hwang S. Constructing and employing theoretical frameworks in (mathematics) education research. For the Learning of Mathematics. 2019; 39 (3):44–47. [ Google Scholar ]
  • Cai J, Jiang C. An analysis of problem-posing tasks in Chinese and U.S. elementary mathematics textbooks. International Journal of Science and Mathematics Education. 2017; 15 (8):1521–1540. doi: 10.1007/s10763-016-9758-2. [ CrossRef ] [ Google Scholar ]
  • Cai, J., & Leikin, R. (2020). Affect in mathematical problem posing: Conceptualization, advances, and future directions for research. Educational Studies in Mathematics , 105 , 287–301. 10.1007/s10649-020-10008-x
  • Cai, J., Morris, A., Hohensee, C., Hwang, S., Robison, V., Cirillo, M., … Hiebert, J. (2020). Improving the impact of research on practice: Capitalizing on technological advances for research. Journal for Research in Mathematics Education , 51 (5), 518–529 https://pubs.nctm.org/view/journals/jrme/51/5/article-p518.xml
  • Chronaki, A. (2019). Affective bodying of mathematics, children and difference: Choreographing ‘sad affects’ as affirmative politics in early mathematics teacher education. ZDM-Mathematics Education , 51 (2), 319–330. 10.1007/s11858-019-01045-9
  • Civil, M., & Bernier, E. (2006). Exploring images of parental participation in mathematics education: Challenges and possibilities. Mathematical Thinking and Learning , 8 (3), 309–330. 10.1207/s15327833mtl0803_6
  • Cobb P, Gresalfi M, Hodge LL. An interpretive scheme for analyzing the identities that students develop in mathematics classrooms. Journal for Research in Mathematics Education. 2009; 40 (1):40–68. [ Google Scholar ]
  • Darragh L. Identity research in mathematics education. Educational Studies in Mathematics. 2016; 93 (1):19–33. doi: 10.1007/s10649-016-9696-5. [ CrossRef ] [ Google Scholar ]
  • de Abreu, G., Bishop, A., & Presmeg, N. C. (Eds.). (2006). Transitions between contexts of mathematical practices . Kluwer.
  • de Freitas, E., Ferrara, F., & Ferrari, G. (2019). The coordinated movements of collaborative mathematical tasks: The role of affect in transindividual sympathy. ZDM-Mathematics Education , 51 (2), 305–318. 10.1007/s11858-018-1007-4
  • Deng, Z. (2018). Contemporary curriculum theorizing: Crisis and resolution. Journal of Curriculum Studies , 50 (6), 691–710. 10.1080/00220272.2018.1537376
  • Dobie, T. E., & Sherin, B. (2021). The language of mathematics teaching: A text mining approach to explore the zeitgeist of US mathematics education. Educational Studies in Mathematics . 10.1007/s10649-020-10019-8
  • Eames, C., & Eames, R. (1977). Powers of Ten [Film]. YouTube. https://www.youtube.com/watch?v=0fKBhvDjuy0
  • Engelbrecht, J., Borba, M. C., Llinares, S., & Kaiser, G. (2020). Will 2020 be remembered as the year in which education was changed? ZDM-Mathematics Education , 52 (5), 821–824. 10.1007/s11858-020-01185-3 [ PMC free article ] [ PubMed ]
  • English, L. (2008). Setting an agenda for international research in mathematics education. In L. D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 3–19). Routledge.
  • Ernest, P. (2020). Unpicking the meaning of the deceptive mathematics behind the COVID alert levels. Philosophy of Mathematics Education Journal , 36 http://socialsciences.exeter.ac.uk/education/research/centres/stem/publications/pmej/pome36/index.html
  • Freudenthal, H. (1986). Didactical phenomenology of mathematical structures . Springer.
  • Gilmore, C., Göbel, S. M., & Inglis, M. (2018). An introduction to mathematical cognition . Routledge.
  • Goos, M., & Beswick, K. (Eds.). (2021). The learning and development of mathematics teacher educators: International perspectives and challenges . Springer. 10.1007/978-3-030-62408-8
  • Gorard, S. (Ed.). (2020). Getting evidence into education. Evaluating the routes to policy and practice . Routledge.
  • Gravemeijer, K., Stephan, M., Julie, C., Lin, F.-L., & Ohtani, M. (2017). What mathematics education may prepare students for the society of the future? International Journal of Science and Mathematics Education , 15 (1), 105–123. 10.1007/s10763-017-9814-6
  • Hannula, M. S. (2019). Young learners’ mathematics-related affect: A commentary on concepts, methods, and developmental trends. Educational Studies in Mathematics , 100 (3), 309–316. 10.1007/s10649-018-9865-9
  • Hilt, L. T. (2015). Included as excluded and excluded as included: Minority language pupils in Norwegian inclusion policy. International Journal of Inclusive Education , 19 (2), 165–182.
  • Hodgen, J., Taylor, B., Jacques, L., Tereshchenko, A., Kwok, R., & Cockerill, M. (2020). Remote mathematics teaching during COVID-19: Intentions, practices and equity . UCL Institute of Education https://discovery.ucl.ac.uk/id/eprint/10110311/
  • Horn, I. S. (2017). Motivated: Designing math classrooms where students want to join in . Heinemann.
  • Hoyles C, Noss R, Pozzi S. Proportional reasoning in nursing practice. Journal for Research in Mathematics Education. 2001; 32 (1):4–27. doi: 10.2307/749619. [ CrossRef ] [ Google Scholar ]
  • Ito, M., Martin, C., Pfister, R. C., Rafalow, M. H., Salen, K., & Wortman, A. (2018). Affinity online: How connection and shared interest fuel learning . NYU Press.
  • Jackson K. Approaching participation in school-based mathematics as a cross-setting phenomenon. The Journal of the Learning Sciences. 2011; 20 (1):111–150. doi: 10.1080/10508406.2011.528319. [ CrossRef ] [ Google Scholar ]
  • Jansen, A., Herbel-Eisenmann, B., & Smith III, J. P. (2012). Detecting students’ experiences of discontinuities between middle school and high school mathematics programs: Learning during boundary crossing. Mathematical Thinking and Learning , 14 (4), 285–309. 10.1080/10986065.2012.717379
  • Johnson, L. F., Smith, R. S., Smythe, J. T., & Varon, R. K. (2009). Challenge-based learning: An approach for our time (pp. 1–38). The New Media Consortium https://www.learntechlib.org/p/182083
  • Jullien, F. (2018). Living off landscape: Or the unthought-of in reason . Rowman & Littlefield.
  • Kazima, M. (2019). What is proven to work in successful countries should be implemented in other countries: The case of Malawi and Zambia. In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the international group for the Psychology of Mathematics Education (Vol. 1, pp. 73–78). PME.
  • Kim, H. (2019). Ask again, “why should we implement what works in successful countries?” In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the international group for the Psychology of Mathematics Education (Vol. 1, pp. 79–82). PME.
  • Kolovou, A., Van Den Heuvel-Panhuizen, M., & Bakker, A. (2009). Non-routine problem solving tasks in primary school mathematics textbooks—a needle in a haystack. Mediterranean Journal for Research in Mathematics Education , 8 (2), 29–66.
  • Kwon, O. N., Han, C., Lee, C., Lee, K., Kim, K., Jo, G., & Yoon, G. (2021). Graphs in the COVID-19 news: A mathematics audit of newspapers in Korea. Educational Studies in Mathematics . 10.1007/s10649-021-10029-0 [ PMC free article ] [ PubMed ]
  • Lefebvre, H. (2004). Rhythmanalysis: Space, time and everyday life (Original 1992; Translation by S. Elden & G. Moore) . Bloomsbury Academic. 10.5040/9781472547385.
  • Li, Y. (2019). Should what works in successful countries be implemented in other countries? In M. Graven, H. Venkat, A. A. Essien, & P. Vale (Eds.), Proceedings of the 43rd conference of the international group for the Psychology of Mathematics Education (Vol. 1, pp. 67–72). PME.
  • Martin, D., Gholson, M., & Leonard, J. (2010). Mathematics as gatekeeper: Power and privilege in the production of power. Journal of Urban Mathematics Education , 3 (2), 12–24.
  • Masschelein, J., & Simons, M. (2019). Bringing more ‘school’ into our educational institutions. Reclaiming school as pedagogic form. In A. Bikner-Ahsbahs & M. Peters (Eds.), Unterrichtsentwicklung macht Schule (pp. 11–26) . Springer. 10.1007/978-3-658-20487-7_2
  • Meeter, M., Bele, T., den Hartogh, C., Bakker, T., de Vries, R. E., & Plak, S. (2020). College students’ motivation and study results after COVID-19 stay-at-home orders. https://psyarxiv.com .
  • Nemirovsky, R., Kelton, M. L., & Civil, M. (2017). Toward a vibrant and socially significant informal mathematics education. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 968–979). National Council of Teachers of Mathematics.
  • Niss M. The very multi-faceted nature of mathematics education research. For the Learning of Mathematics. 2019; 39 (2):2–7. [ Google Scholar ]
  • OECD. (2020). Back to the Future of Education: Four OECD Scenarios for Schooling. Educational Research and Innovation . OECD Publishing. 10.1787/20769679
  • Potari, D., Psycharis, G., Sakonidis, C., & Zachariades, T. (2019). Collaborative design of a reform-oriented mathematics curriculum: Contradictions and boundaries across teaching, research, and policy. Educational Studies in Mathematics , 102 (3), 417–434. 10.1007/s10649-018-9834-3
  • Proulx, J., & Maheux, J. F. (2019). Effect sizes, epistemological issues, and identity of mathematics education research: A commentary on editorial 102(1). Educational Studies in Mathematics , 102 (2), 299–302. 10.1007/s10649-019-09913-7
  • Roos, H. (2019). Inclusion in mathematics education: An ideology, A way of teaching, or both? Educational Studies in Mathematics , 100 (1), 25–41. 10.1007/s10649-018-9854-z
  • Saenz, M., Medina, A., & Urbine Holguin, B. (2020). Colombia: La prender al onda (to turn on the wave). Education continuity stories series . OECD Publishing https://oecdedutoday.com/wp-content/uploads/2020/12/Colombia-a-prender-la-onda.pdf
  • Schindler, M., & Bakker, A. (2020). Affective field during collaborative problem posing and problem solving: A case study. Educational Studies in Mathematics , 105 , 303–324. 10.1007/s10649-020-09973-0
  • Schoenfeld, A. H. (1999). Looking toward the 21st century: Challenges of educational theory and practice. Educational Researcher , 28 (7), 4–14. 10.3102/0013189x028007004
  • Schukajlow, S., Rakoczy, K., & Pekrun, R. (2017). Emotions and motivation in mathematics education: Theoretical considerations and empirical contributions. ZDM-Mathematics Education , 49 (3), 307–322. 10.1007/s11858-017-0864-6 [ PMC free article ] [ PubMed ]
  • Sfard A. What could be more practical than good research? Educational Studies in Mathematics. 2005; 58 (3):393–413. doi: 10.1007/s10649-005-4818-5. [ CrossRef ] [ Google Scholar ]
  • Shimizu, Y., & Vithal, R. (Eds.). (2019). ICMI Study 24 Conference Proceedings. School mathematics curriculum reforms: Challenges, changes and opportunities . ICMI: University of Tsukuba & ICMI http://www.human.tsukuba.ac.jp/~icmi24/
  • Sierpinska A. Some remarks on understanding in mathematics. For the Learning of Mathematics. 1990; 10 (3):24–41. [ Google Scholar ]
  • Stephan, M. L., Chval, K. B., Wanko, J. J., Civil, M., Fish, M. C., Herbel-Eisenmann, B., … Wilkerson, T. L. (2015). Grand challenges and opportunities in mathematics education research. Journal for Research in Mathematics Education , 46 (2), 134–146. 10.5951/jresematheduc.46.2.0134
  • Suazo-Flores, E., Alyami, H., Walker, W. S., Aqazade, M., & Kastberg, S. E. (2021). A call for exploring mathematics education researchers’ interdisciplinary research practices. Mathematics Education Research Journal , 1–10. 10.1007/s13394-021-00371-0
  • Svensson, P., Meaney, T., & Norén, E. (2014). Immigrant students’ perceptions of their possibilities to learn mathematics: The case of homework. For the Learning of Mathematics , 34 (3), 32–37.
  • UNESCO. (2015). Teacher policy development guide . UNESCO, International Task Force on Teachers for Education 2030. https://teachertaskforce.org/sites/default/files/2020-09/370966eng_0_1.pdf .
  • Van den Heuvel-Panhuizen M. Can scientific research answer the ‘what’ question of mathematics education? Cambridge Journal of Education. 2005; 35 (1):35–53. doi: 10.1080/0305764042000332489. [ CrossRef ] [ Google Scholar ]
  • Wittmann EC. Mathematics education as a ‘design science’ Educational Studies in Mathematics. 1995; 29 (4):355–374. doi: 10.1007/BF01273911. [ CrossRef ] [ Google Scholar ]
  • Yoon, H., Byerley, C. O. N., Joshua, S., Moore, K., Park, M. S., Musgrave, S., Valaas, L., & Drimalla, J. (2021). United States and South Korean citizens’ interpretation and assessment of COVID-19 quantitative data. The Journal of Mathematical Behavior . 10.1016/j.jmathb.2021.100865.

Advertisement

Advertisement

A call for exploring mathematics education researchers’ interdisciplinary research practices

  • Short Communication
  • Published: 17 February 2021
  • Volume 35 , pages 23–32, ( 2023 )

Cite this article

  • Elizabeth Suazo-Flores   ORCID: orcid.org/0000-0001-6565-3879 1 ,
  • Hanan Alyami   ORCID: orcid.org/0000-0003-4649-8919 1 ,
  • William S. Walker III 1 ,
  • Mahtob Aqazade 1 &
  • Signe E. Kastberg 1  

677 Accesses

1 Altmetric

Explore all metrics

Mathematics Education Researchers’ work in interdisciplinary research groups can be enriching and challenging in terms of communication, work processes, institutional support, and the translation of findings into viable results for existing disciplines. We contend that there is a need to explore practices (i.e., ways of being, operating, and interacting with others) in these groups. We searched Scopus and ERIC databases to find published works of interdisciplinary groups involving at least one Mathematics Education Researcher, which led us to five articles in peer-reviewed mathematics education journals. Thematic analysis of these articles helped us identify three practices: (1) working toward research interests, (2) cultivating trust and open-mindedness, and (3) understanding institutional support. We argue that consideration of these practices can facilitate Mathematics Education Researchers’ interdisciplinary collaborations. Further research documenting Mathematics Education Researchers’ interactions within interdisciplinary research groups is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Ansari, D., & Lyons, I. M. (2016). Cognitive neuroscience and mathematics learning: how far have we come? Where do we need to go? ZDM Mathematics Education, 48 (3), 379–383. https://doi.org/10.1007/s11858-016-0782-z .

Article   Google Scholar  

Bruce, C. D., Davis, B., Sinclair, N., McGarvey, L., Hallowell, et al. (2017). Understanding gaps in research networks: using “spatial reasoning” as a window into the importance of networked educational research. Educational Studies in Mathematics, 95 (2), 143–161. https://doi.org/10.1007/s10649-016-9743-2 .

Cobb, P., & Bauersfeld, H. (1995). Introduction: the coordination of psychological and sociological perspectives in mathematics education. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning (pp. 1–16). Hillsdale, NJ: Lawrence Erlbaum Associates.

Google Scholar  

Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31 (3–4), 175–190.

Doig, B., Williams, J., Swanson, D., Borromeo Ferri, R., & Drake, P. (Eds.). (2019). Interdisciplinary mathematics education: the state of the art and beyond [Monograph]. In G. Kaiser (Series Ed.), ICME-13 Monographs. Retrieved from  https://doi.org/10.1007/978-3-030-11066-6 .

Dörfler, W. (2003). Mathematics and mathematics education: content and people, relation and difference. Educational Studies in Mathematics, 54 (2), 147–170. https://doi.org/10.1023/b:educ.0000006118.25919.07 .

Goos, M., & Bennison, A. (2018). Boundary crossing and brokering between disciplines in pre-service mathematics teacher education. Mathematics Education Research Journal, 30 (3), 255–275.

Groth, R. E. (2015). Working at the boundaries of mathematics education and statistics education communities of practice. Journal for Research in Mathematics Education, 46 (1), 4–16. https://doi.org/10.5951/jresematheduc.46.1.0004 .

Hyland, K. (2004). Disciplinary cultures, texts and interactions. In Disciplinary discourses: Social interactions in academic writing (pp. 1–19). University of Michigan Press.

Institute of Medicine. (2005). Facilitating interdisciplinary research . Washington, DC: The National Academies Press. https://doi.org/10.17226/11153 .

Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 3–38). New York, NY: Macmillan Publishing Co Inc.

Krummheuer, G., Leuzinger-Bohleber, M., Müller-Kirchof, M., Münz, M., & Vogel, R. (2013). Explaining the mathematical creativity of a young boy: an interdisciplinary venture between mathematics education and psychoanalysis. Educational Studies in Mathematics, 84 (2), 183–199.

MacIntyre, A. C. (1984). After virtue: a study in moral theory (2nd ed.). Notre Dame, IN: University of Notre Dame Press.

McCloskey, A. (2014). The promise of ritual: a lens for understanding persistent practices in mathematics classrooms. Educational Studies in Mathematics, 86 (1), 19–38. https://doi.org/10.1007/s10649-013-9520-4 .

Ramful, A., & Narod, F. B. (2014). Proportional reasoning in the learning of chemistry: levels of complexity. Mathematics Education Research Journal, 26 (1), 25–46.

Saldaña, J. (2013). The coding manual for qualitative researchers . Thousand Oaks, CA: Sage.

Schön, D. A. (1983). The reflective practitioner: how professionals think in action . USA: Basic Books.

Thompson, K. V., Cooke, T. J., Fagan, W. F., Gulick, D., Levy, D., Nelson, K. C., et al. (2013). Infusing quantitative approaches throughout the biological sciences curriculum. International Journal of Mathematical Education in Science and Technology, 44 (6), 817–833.

Walker, W. S., III, Suazo-Flores, E., Aqazade, M., Alyami, H., & Kastberg, S. E. (2018). Nature, challenges, and strategies of stem research teams. In Hodges, T. E., Roy, G.J., & Tyminski, A. M. (Eds.) Proceedings of the 40th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1366-1366). Greenville, SC: University of South Carolina & Clemson University.

Wenger, E. (1998). Communities of practice: learning, meaning, and identity (Learning in doing) . New York, NY.: Cambridge University Press.

Book   Google Scholar  

Williams, S. R., & Leatham, K. R. (2017). Journal quality in mathematics education. Journal for Research in Mathematics Education, 48 (4), 369–396.

Williams, J., Roth, M., Swanson, D., Doig, B., Groves, S., Omuvwie, M., et al. (2016). Interdisciplinary mathematics education: a state of the art . Cham: Springer. https://doi.org/10.1007/978-3-319-42267-1_1 .

Download references

Acknowledgements

We would like to thank Siddika Selcen Guzey (Purdue University) for her valuable comments on this paper.

Author information

Authors and affiliations.

Department of Curriculum and Instruction, Purdue University, West Lafayette, IN, USA

Elizabeth Suazo-Flores, Hanan Alyami, William S. Walker III, Mahtob Aqazade & Signe E. Kastberg

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Elizabeth Suazo-Flores .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Suazo-Flores, E., Alyami, H., Walker, W.S. et al. A call for exploring mathematics education researchers’ interdisciplinary research practices. Math Ed Res J 35 (Suppl 1), 23–32 (2023). https://doi.org/10.1007/s13394-021-00371-0

Download citation

Received : 30 October 2019

Revised : 22 January 2021

Accepted : 02 February 2021

Published : 17 February 2021

Issue Date : July 2023

DOI : https://doi.org/10.1007/s13394-021-00371-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Mathematics education researchers
  • Interdisciplinary collaborations
  • Research practice
  • Find a journal
  • Publish with us
  • Track your research
  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

181 Mathematics Research Topics From PhD Experts

math research topics

If you are reading this blog post, it means you are looking for some exceptional math research topics. You want them to be original, unique even. If you manage to find topics like this, you can be sure your professor will give you a top grade (if you write a decent paper, that is). The good news is that you have arrived at just the right place – at the right time. We have just finished updating our list of topics, so you will find plenty of original ideas right on this page. All our topics are 100 percent free to use as you see fit. You can reword them and you don’t need to give us any credit.

And remember: if you need assistance from a professional, don’t hesitate to reach out to us. We are not just the best place for math research topics for high school students; we are also the number one choice for students looking for top-notch research paper writing services.

Our Newest Research Topics in Math

We know you probably want the best and most recent research topics in math. You want your paper to stand out from all the rest. After all, this is the best way to get some bonus points from your professor. On top of this, finding some great topics for your next paper makes it easier for you to write the essay. As long as you know at least something about the topic, you’ll find that writing a great paper or buy phd thesis isn’t as difficult as you previously thought.

So, without further ado, here are the 181 brand new topics for your next math research paper:

Cool Math Topics to Research

Are you looking for some cool math topics to research? We have a list of original topics for your right here. Pick the one you like and start writing now:

  • Roll two dice and calculate a probability
  • Discuss ancient Greek mathematics
  • Is math really important in school?
  • Discuss the binomial theorem
  • The math behind encryption
  • Game theory and its real-life applications
  • Analyze the Bernoulli scheme
  • What are holomorphic functions and how do they work?
  • Describe big numbers
  • Solving the Tower of Hanoi problem

Undergraduate Math Research Topics

If you are an undergraduate looking for some research topics for your next math paper, you will surely appreciate our list of interesting undergraduate math research topics:

  • Methods to count discrete objects
  • The origins of Greek symbols in mathematics
  • Methods to solve simultaneous equations
  • Real-world applications of the theorem of Pythagoras
  • Discuss the limits of diffusion
  • Use math to analyze the abortion data in the UK over the last 100 years
  • Discuss the Knot theory
  • Analyze predictive models (take meteorology as an example)
  • In-depth analysis of the Monte Carlo methods for inverse problems
  • Squares vs. rectangles (compare and contrast)

Number Theory Topics to Research

Interested in writing about number theory? It is not an easy subject to discuss, we know. However, we are sure you will appreciate these number theory topics:

  • Discuss the greatest common divisor
  • Explain the extended Euclidean algorithm
  • What are RSA numbers?
  • Discuss Bézout’s lemma
  • In-depth analysis of the square-free polynomial
  • Discuss the Stern-Brocot tree
  • Analyze Fermat’s little theorem
  • What is a discrete logarithm?
  • Gauss’s lemma in number theory
  • Analyze the Pentagonal number theorem

Math Research Topics for High School

High school students shouldn’t be too worried about their math papers because we have some unique, and quite interesting, math research topics for high school right here:

  • Discuss Brun’s constant
  • An in-depth look at the Brahmagupta–Fibonacci identity
  • What is derivative algebra?
  • Describe the Symmetric Boolean function
  • Discuss orders of approximation in limits
  • Solving Regiomontanus’ angle maximization problem
  • What is a Quadratic integral?
  • Define and describe complementary angles
  • Analyze the incircle and excircles of a triangle
  • Analyze the Bolyai–Gerwien theorem in geometry
  • Math in our everyday life

Complex Math Topics

If you want to give some complex math topics a try, we have the best examples below. Remember, these topics should only be attempted by students who are proficient in mathematics:

  • Mathematics and its appliance in Artificial Intelligence
  • Try to solve an unsolved problem in math
  • Discuss Kolmogorov’s zero-one law
  • What is a discrete random variable?
  • Analyze the Hewitt–Savage zero-one law
  • What is a transferable belief model?
  • Discuss 3 major mathematical theorems
  • Describe and analyze the Dempster-Shafer theory
  • An in-depth analysis of a continuous stochastic process
  • Identify and analyze Gauss-Markov processes

Easy Math Research Paper Topics

Perhaps you don’t want to spend too much time working on your next research paper. Who can blame you? Check out these easy math research paper topics:

  • Define the hyperbola
  • Do we need to use a calculator during math class?
  • The binomial theorem and its real-world applications
  • What is a parabola in geometry?
  • How do you calculate the slope of a curve?
  • Define the Jacobian matrix
  • Solving matrix problems effectively
  • Why do we need differential equations?
  • Should math be mandatory in all schools?
  • What is a Hessian matrix?

Logic Topics to Research

We have some interesting logical topics for research papers. These are perfect for students interested in writing about math logic. Pick one right now:

  • Discuss the reductio ad absurdum approach
  • Discuss Boolean algebra
  • What is consistency proof?
  • Analyze Trakhtenbrot’s theorem (the finite model theory)
  • Discuss the Gödel completeness theorem
  • An in-depth analysis of Morley’s categoricity theorem
  • How does the Back-and-forth method work?
  • Discuss the Ehrenfeucht–Fraïssé game technique
  • Discuss Aleph numbers (Aleph-null and Aleph-one)
  • Solving the Suslin problem

Algebra Topics for a Research Paper

Would you like to write about an algebra topic? No problem, our seasoned writers have compiled a list of the best algebra topics for a research paper:

  • Discuss the differential equation
  • Analyze the Jacobson density theorem
  • The 4 properties of a binary operation in algebra
  • Analyze the unary operator in depth
  • Analyze the Abel–Ruffini theorem
  • Epimorphisms vs. monomorphisms: compare and contrast
  • Discuss the Morita duality in algebraic structures
  • Idempotent vs. nilpotent in Ring theory
  • Discuss the Artin-Wedderburn theorem
  • What is a commutative ring in algebra?
  • Analyze and describe the Noetherian ring

Math Education Research Topics

There is nothing wrong with writing about math education, especially if your professor did not give you writing prompts. Here are some very nice math education research topics:

  • What are the goals a mathematics professor should have?
  • What is math anxiety in the classroom?
  • Teaching math in UK schools: the difficulties
  • Computer programming or math in high school?
  • Is math education in Europe at a high enough level?
  • Common Core Standards and their effects on math education
  • Culture and math education in Africa
  • What is dyscalculia and how does it manifest itself?
  • When was algebra first thought in schools?
  • Math education in the United States versus the United Kingdom

Computability Theory Topics to Research

Writing about computability theory can be a very interesting adventure. Give it a try! Here are some of our most interesting computability theory topics to research:

  • What is a multiplication table?
  • Analyze the Scholz conjecture
  • Explain exponentiating by squaring
  • Analyze the Myhill-Nerode theorem
  • What is a tree automaton?
  • Compare and contrast the Pushdown automaton and the Büchi automaton
  • Discuss the Markov algorithm
  • What is a Turing machine?
  • Analyze the post correspondence problem
  • Discuss the linear speedup theorem
  • Discuss the Boolean satisfiability problem

Interesting Math Research Topics

We know you want topics that are interesting and relatively easy to write about. This is why we have a separate list of our most interesting math research topics:

  • What is two-element Boolean algebra?
  • The life of Gauss
  • The life of Isaac Newton
  • What is an orthodiagonal quadrilateral?
  • Tessellation in Euclidean plane geometry
  • Describe a hyperboloid in 3D geometry
  • What is a sphericon?
  • Discuss the peculiarities of Borel’s paradox
  • Analyze the De Finetti theorem in statistics
  • What are Martingales?
  • The basics of stochastic calculus

Applied Math Research Topics

Interested in writing about applied mathematics? Our team managed to create a list of awesome applied math research topics from scratch for you:

  • Discuss Newton’s laws of motion
  • Analyze the perpendicular axes rule
  • How is a Galilean transformation done?
  • The conservation of energy and its applications
  • Discuss Liouville’s theorem in Hamiltonian mechanics
  • Analyze the quantum field theory
  • Discuss the main components of the Lorentz symmetry
  • An in-depth look at the uncertainty principle

Geometry Topics for a Research Paper

Geometry can be a very captivating subject, especially when you know plenty about it. Check out our list of geometry topics for a research paper and pick the best one today:

  • Most useful trigonometry functions in math
  • The life of Archimedes and his achievements
  • Trigonometry in computer graphics
  • Using Vincenty’s formulae in geodesy
  • Define and describe the Heronian tetrahedron
  • The math behind the parabolic microphone
  • Discuss the Japanese theorem for concyclic polygons
  • Analyze Euler’s theorem in geometry

Math Research Topics for Middle School

Yes, even middle school children can write about mathematics. We have some original math research topics for middle school right here:

  • Finding critical points in a graph
  • The basics of calculus
  • What makes a graph ultrahomogeneous?
  • How do you calculate the area of different shapes?
  • What contributions did Euclid have to the field of mathematics?
  • What is Diophantine geometry?
  • What makes a graph regular?
  • Analyze a full binary tree

Math Research Topics for College Students

As you’ve probably already figured out, college students should pick topics that are a bit more complex. We have some of the best math research topics for college students right here:

  • What are extremal problems and how do you solve them?
  • Discuss an unsolvable math problem
  • How can supercomputers solve complex mathematical problems?
  • An in-depth analysis of fractals
  • Discuss the Boruvka’s algorithm (related to the minimum spanning tree)
  • Discuss the Lorentz–FitzGerald contraction hypothesis in relativity
  • An in-depth look at Einstein’s field equation
  • The math behind computer vision and object recognition

Calculus Topics for a Research Paper

Let’s face it: calculus is not a very difficult field. So, why don’t you pick one of our excellent calculus topics for a research paper and start writing your essay right away:

  • When do we need to apply the L’Hôpital rule?
  • Discuss the Leibniz integral rule
  • Calculus in ancient Egypt
  • Discuss and analyze linear approximations
  • The applications of calculus in real life
  • The many uses of Stokes’ theorem
  • Discuss the Borel regular measure
  • An in-depth analysis of Lebesgue’s monotone convergence theorem

Simple Math Research Paper Topics for High School

This is the place where you can find some pretty simple topics if you are a high school student. Check out our simple math research paper topics for high school:

  • The life and work of the famous Pierre de Fermat
  • What are limits and why are they useful in calculus?
  • Explain the concept of congruency
  • The life and work of the famous Jakob Bernoulli
  • Analyze the rhombicosidodecahedron and its applications
  • Calculus and the Egyptian pyramids
  • The life and work of the famous Jean d’Alembert
  • Discuss the hyperplane arrangement in combinatorial computational geometry
  • The smallest enclosing sphere method in combinatorics

Business Math Topics

If you want to surprise your professor, why don’t you write about business math? We have some exceptional topics that nobody has thought about right here:

  • Is paying a loan with another loan a good approach?
  • Discuss the major causes of a stock market crash
  • Best debt amortization methods in the US
  • How do bank loans work in the UK?
  • Calculating interest rates the easy way
  • Discuss the pros and cons of annuities
  • Basic business math skills everyone should possess
  • Business math in United States schools
  • Analyze the discount factor

Probability and Statistics Topics for Research

Probability and statistics are not easy fields. However, you can impress your professor with one of our unique probability and statistics topics for research:

  • What is the autoregressive conditional duration?
  • Applying the ANOVA method to ranks
  • Discuss the practical applications of the Bates distribution
  • Explain the principle of maximum entropy
  • Discuss Skorokhod’s representation theorem in random variables
  • What is the Factorial moment in the Theory of Probability?
  • Compare and contrast Cochran’s C test and his Q test
  • Analyze the De Moivre-Laplace theorem
  • What is a negative probability?

Need Help With Research Paper?

We offer the absolute best high school and college research paper writing service on the Internet. When you need any kind of research paper help, our experienced ENL writers and professional editors are here to help. With years of experience under their belts, our experts can get your research paper done in as little as 3 hours.

Getting cheap online help with research papers has never been easier. College students should just get in touch with us and tell us what they need. We will assign them our most affordable and experienced math writer in minutes, even during the night. We are the best-rated online writing company on the Internet because we always deliver high-quality academic content at the most competitive prices. Give us a try today!

Leave a Reply Cancel reply

IMAGES

  1. 166 Math Research Topics for Academic Papers and Essays

    research project topics on mathematics education

  2. (PDF) Research in Mathematics Education

    research project topics on mathematics education

  3. How to Make Research Proposal for Mathematics PhD Project

    research project topics on mathematics education

  4. 210 Brilliant Math Research Topics and Ideas for Students

    research project topics on mathematics education

  5. 181 Math Research Topics

    research project topics on mathematics education

  6. Select Your PhD Topics in Mathematics

    research project topics on mathematics education

VIDEO

  1. International conference of Mathematics & Mathematics Education (ICKME)

  2. Math Projects

  3. Action research file /pedagogy of mathematics/B.Ed

  4. CHAPTER 4 (FOUR) PROJECT OUTLINE ( FORMAT OR TABLE OF CONTENT ) IN BRIEF #projectwriting #chapter4

  5. CHAPTER 3 (THREE) PROJECT OUTLINE ( FORMAT OR TABLE OF CONTENT ) IN BRIEF #projectwriting #chapter3

  6. chapter two Concept framework #projectsynopsis #projectwritingforbeginners #chapter2

COMMENTS

  1. 170+ Research Topics In Education (+ Free Webinar)

    The impact of poverty on education. The use of student data to inform instruction. The role of parental involvement in education. The effects of mindfulness practices in the classroom. The use of technology in the classroom. The role of critical thinking in education.

  2. Future themes of mathematics education research: an international

    Before the pandemic (2019), we asked: On what themes should research in mathematics education focus in the coming decade? The 229 responses from 44 countries led to eight themes plus considerations about mathematics education research itself. The themes can be summarized as teaching approaches, goals, relations to practices outside mathematics education, teacher professional development ...

  3. Researching in Undergraduate Mathematics Education: Possible ...

    For research in undergraduate mathematics education, a pre-requisite may be the mathematical knowledge of whatever topic you would like to research. For example, if an undergraduate student wants to research in the teaching of real analysis, they must have some knowledge of real analysis topics in order to understand the mathematics in the ...

  4. Research trends in mathematics education: A quantitative content

    This research aims to uncover current trends and key issues by examining the research in mathematics education during the period 2017-2021. For this purpose, five major peer reviewed academic ...

  5. Articles

    Marianne van Dijke-Droogers. Paul Drijvers. Arthur Bakker. Manuscript Open access 10 April 2024. Correction to: Book Review: Humanizing Disability in Mathematics Education: Forging New Paths. Paulo Tan, Alexis Padilla, Erica N. Mason, and James Sheldon (Eds.) Danielle Divis. Correction 02 April 2024.

  6. Design-based research in mathematics education: trends ...

    Originating from the learning sciences community, design-based research (DBR) is attracting interest from many educational researchers including those focused on mathematics. Beyond its research role, it is being seen as a collaborative way to engage teachers in deep professional development leading not only to changes in skill but also in purpose. Previous reviews of the approach, however ...

  7. List of issues Research in Mathematics Education

    Browse the list of issues and latest articles from Research in Mathematics Education. All issues. Special issues. Latest articles. Volume 25 2023. Volume 24 2022. Volume 23 2021. Volume 22 2020. Volume 21 2019.

  8. Research in Mathematics Education: Vol 23, No 2 (Current issue)

    Research in Mathematics Education, Volume 23, Issue 2 (2021) See all volumes and issues. Volume 23, 2021 Vol 22, 2020 Vol 21, 2019 Vol 20, 2018 Vol 19, 2017 Vol 18, 2016 Vol 17, 2015 Vol 16, 2014 Vol 15, 2013 Vol 14, 2012 Vol 13, 2011 Vol 12, 2010 Vol 11, 2009 Vol 10, 2008 Vol 9, 2007 Vol 8, 2006 Vol 7, 2005 Vol 6, 2004 Vol 5, 2003 Vol 4, 2002 ...

  9. mathematics education research: Topics by Science.gov

    This volume represents an effort to develop a definitive reference work on research in mathematics education. The reference is divided into two parts. Part 1, on the research process, focuses on problems of research methods and their relevance to research in mathematics education. Part 1 also introduces the beginner to some of the issues andâ ...

  10. Research in Mathematics Education: Vol 25, No 3 (Current issue)

    Published online: 3 Apr 2024. Published online: 7 Mar 2024. Published online: 28 Feb 2024. Published online: 8 Feb 2024. Explore the current issue of Research in Mathematics Education, Volume 25, Issue 3, 2023.

  11. Mathematics Education Project Topics and Materials

    Top Mathematics Education Project Topics and Research Ideas/Areas: Innovative Pedagogical Approaches: Explore novel teaching methods and strategies in mathematics education, such as flipped classrooms, inquiry-based learning, and project-based learning, assessing their effectiveness in enhancing student engagement and understanding.

  12. Mathematics education: Promoting interdisciplinarity with science and

    Promoting teachers' professional development. Mathematics education: Promoting interdisciplinarity with science and technologLinking mathematics with science has been widely advocated (Berlin & Lee, Citation 2005) but it is not an easy goal to achieve (Baxter et al., Citation 2014).In this regard, several authors refer to lack of research about STEM integration, especially with respect to ...

  13. The future of mathematics education since COVID-19: humans ...

    The COVID-19 pandemic has changed the agenda of mathematics education. This change will be analyzed by looking at three trends in mathematics education: the use of digital technology, philosophy of mathematics education, and critical mathematics education. Digital technology became a trend in mathematics education in response to the arrival of a different kind of artifact to the mathematics ...

  14. Exploring Mathematics Education Project Topics and Materials

    Mathematics education project topics and materials are essential resources for educators, researchers, and students dedicated to enhancing the teaching and learning of mathematics. Whether you are in Nigeria or any other part of the world, the availability of PDF materials, researchable topics, and tailored project ideas offers valuable support ...

  15. 251+ Math Research Topics [2024 Updated]

    251+ Math Research Topics: Beginners To Advanced. Prime Number Distribution in Arithmetic Progressions. Diophantine Equations and their Solutions. Applications of Modular Arithmetic in Cryptography. The Riemann Hypothesis and its Implications. Graph Theory: Exploring Connectivity and Coloring Problems.

  16. The transition from school to university in mathematics education

    The book Research and Development in University Mathematics Education (Durand-Guerrier et al., 2021) provides a detailed overview of the discussion on topics in the 2016 and 2018 INDRUM conferences. Focusing on STT and according to our criteria, we identified 18 contributions relevant to our review (Table (Table2 2 ).

  17. Mathematics Education Project Topics and Materials

    How fast can i get a complete MATHEMATICS EDUCATION project from your website?. Within 15 minutes if the exact MATHEMATICS EDUCATION project topic is on our website. Is it a complete research project or just materials? It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

  18. Project Based Learning in Mathematics Context

    1) Incorporating projects as a part of the curriculum. 2) Discovery of answers for problems and questions comes to the fore in PBL to allow students to. struggle with concepts. 3) Projects engage ...

  19. Making Mathematics: List of Mathematics Research Projects and Student Work

    Research Projects | Research Settings | Mathematics Research Skills | Mathematics Tools | Completed Student Work | Translations of mathematical formulas for web display were created by tex4ht .

  20. Making Mathematics: Mathematics Research Teacher Handbook

    Mathematics research influences student learning in a number of ways: Research provides students with an understanding of what it means to do mathematics and of mathematics as a living, growing field. Writing mathematics and problem-solving become central to student's learning. Students develop mastery of mathematics topics.

  21. Future themes of mathematics education research: an international

    An international survey in two rounds. Around the time when Educational Studies in Mathematics (ESM) and the Journal for Research in Mathematics Education (JRME) were celebrating their 50th anniversaries, Arthur Bakker (editor of ESM) and Jinfa Cai (editor of JRME) saw a need to raise the following future-oriented question for the field of mathematics education research:

  22. PDF A call for exploring mathematics education researchers ...

    Practices for interdisciplinary mathematics education researchers. We found evidence of three practices in the five identified articles: working toward research interests, cultivating trust and open-mindedness, and understanding of institutional support. In Table 2, we identify the articles that contained evidence of each practice and provide ...

  23. 7: Current Research in Mathematics Education

    Google Scholar. Romberg Thomas A and Roweton Marilyn. Pilot Developmental Activities in Elementary Mathematics Conducted at Huegel School, Madison, Wisconsin, 1967-68 1969 Madison Wis. Research and Development Center for Cognitive Learning, Univ. of Wis Working Paper No 24. Google Scholar.

  24. 181 Math Research Topics

    If you are an undergraduate looking for some research topics for your next math paper, you will surely appreciate our list of interesting undergraduate math research topics: Methods to count discrete objects. The origins of Greek symbols in mathematics. Methods to solve simultaneous equations. Real-world applications of the theorem of Pythagoras.