• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Types of Variables in Psychology Research

Examples of Independent and Dependent Variables

Dependent and Independent Variables

  • Intervening Variables
  • Extraneous Variables
  • Controlled Variables
  • Confounding Variables
  • Operationalizing Variables

Frequently Asked Questions

Variables in psychology are things that can be changed or altered, such as a characteristic or value. Variables are generally used in psychology experiments to determine if changes to one thing result in changes to another.

Variables in psychology play a critical role in the research process. By systematically changing some variables in an experiment and measuring what happens as a result, researchers are able to learn more about cause-and-effect relationships.

The two main types of variables in psychology are the independent variable and the dependent variable. Both variables are important in the process of collecting data about psychological phenomena.

This article discusses different types of variables that are used in psychology research. It also covers how to operationalize these variables when conducting experiments.

Students often report problems with identifying the independent and dependent variables in an experiment. While this task can become more difficult as the complexity of an experiment increases, in a psychology experiment:

  • The independent variable is the variable that is manipulated by the experimenter. An example of an independent variable in psychology: In an experiment on the impact of sleep deprivation on test performance, sleep deprivation would be the independent variable. The experimenters would have some of the study participants be sleep-deprived while others would be fully rested.
  • The dependent variable is the variable that is measured by the experimenter. In the previous example, the scores on the test performance measure would be the dependent variable.

So how do you differentiate between the independent and dependent variables? Start by asking yourself what the experimenter is manipulating. The things that change, either naturally or through direct manipulation from the experimenter, are generally the independent variables. What is being measured? The dependent variable is the one that the experimenter is measuring.

Intervening Variables in Psychology

Intervening variables, also sometimes called intermediate or mediator variables, are factors that play a role in the relationship between two other variables. In the previous example, sleep problems in university students are often influenced by factors such as stress. As a result, stress might be an intervening variable that plays a role in how much sleep people get, which may then influence how well they perform on exams.

Extraneous Variables in Psychology

Independent and dependent variables are not the only variables present in many experiments. In some cases, extraneous variables may also play a role. This type of variable is one that may have an impact on the relationship between the independent and dependent variables.

For example, in our previous example of an experiment on the effects of sleep deprivation on test performance, other factors such as age, gender, and academic background may have an impact on the results. In such cases, the experimenter will note the values of these extraneous variables so any impact can be controlled for.

There are two basic types of extraneous variables:

  • Participant variables : These extraneous variables are related to the individual characteristics of each study participant that may impact how they respond. These factors can include background differences, mood, anxiety, intelligence, awareness, and other characteristics that are unique to each person.
  • Situational variables : These extraneous variables are related to things in the environment that may impact how each participant responds. For example, if a participant is taking a test in a chilly room, the temperature would be considered an extraneous variable. Some participants may not be affected by the cold, but others might be distracted or annoyed by the temperature of the room.

Other extraneous variables include the following:

  • Demand characteristics : Clues in the environment that suggest how a participant should behave
  • Experimenter effects : When a researcher unintentionally suggests clues for how a participant should behave

Controlled Variables in Psychology

In many cases, extraneous variables are controlled for by the experimenter. A controlled variable is one that is held constant throughout an experiment.

In the case of participant variables, the experiment might select participants that are the same in background and temperament to ensure that these factors don't interfere with the results. Holding these variables constant is important for an experiment because it allows researchers to be sure that all other variables remain the same across all conditions.  

Using controlled variables means that when changes occur, the researchers can be sure that these changes are due to the manipulation of the independent variable and not caused by changes in other variables.

It is important to also note that a controlled variable is not the same thing as a control group . The control group in a study is the group of participants who do not receive the treatment or change in the independent variable.

All other variables between the control group and experimental group are held constant (i.e., they are controlled). The dependent variable being measured is then compared between the control group and experimental group to see what changes occurred because of the treatment.

Confounding Variables in Psychology

If a variable cannot be controlled for, it becomes what is known as a confounding variabl e. This type of variable can have an impact on the dependent variable, which can make it difficult to determine if the results are due to the influence of the independent variable, the confounding variable, or an interaction of the two.

Operationalizing Variables in Psychology

An operational definition describes how the variables are measured and defined in the study. Before conducting a psychology experiment , it is essential to create firm operational definitions for both the independent variable and dependent variables.

For example, in our imaginary experiment on the effects of sleep deprivation on test performance, we would need to create very specific operational definitions for our two variables. If our hypothesis is "Students who are sleep deprived will score significantly lower on a test," then we would have a few different concepts to define:

  • Students : First, what do we mean by "students?" In our example, let’s define students as participants enrolled in an introductory university-level psychology course.
  • Sleep deprivation : Next, we need to operationally define the "sleep deprivation" variable. In our example, let’s say that sleep deprivation refers to those participants who have had less than five hours of sleep the night before the test.
  • Test variable : Finally, we need to create an operational definition for the test variable. For this example, the test variable will be defined as a student’s score on a chapter exam in the introductory psychology course.

Once all the variables are operationalized, we're ready to conduct the experiment.

Variables play an important part in psychology research. Manipulating an independent variable and measuring the dependent variable allows researchers to determine if there is a cause-and-effect relationship between them.

A Word From Verywell

Understanding the different types of variables used in psychology research is important if you want to conduct your own psychology experiments. It is also helpful for people who want to better understand what the results of psychology research really mean and become more informed consumers of psychology information .

Independent and dependent variables are used in experimental research. Unlike some other types of research (such as correlational studies ), experiments allow researchers to evaluate cause-and-effect relationships between two variables.

Researchers can use statistical analyses to determine the strength of a relationship between two variables in an experiment. Two of the most common ways to do this are to calculate a p-value or a correlation. The p-value indicates if the results are statistically significant while the correlation can indicate the strength of the relationship.

In an experiment on how sugar affects short-term memory, sugar intake would be the independent variable and scores on a short-term memory task would be the independent variable.

In an experiment looking at how caffeine intake affects test anxiety, the amount of caffeine consumed before a test would be the independent variable and scores on a test anxiety assessment would be the dependent variable.

Just as with other types of research, the independent variable in a cognitive psychology study would be the variable that the researchers manipulate. The specific independent variable would vary depending on the specific study, but it might be focused on some aspect of thinking, memory, attention, language, or decision-making.

American Psychological Association. Operational definition . APA Dictionary of Psychology.

American Psychological Association. Mediator . APA Dictionary of Psychology.

Altun I, Cınar N, Dede C. The contributing factors to poor sleep experiences in according to the university students: A cross-sectional study .  J Res Med Sci . 2012;17(6):557-561. PMID:23626634

Skelly AC, Dettori JR, Brodt ED. Assessing bias: The importance of considering confounding .  Evid Based Spine Care J . 2012;3(1):9-12. doi:10.1055/s-0031-1298595

  • Evans, AN & Rooney, BJ. Methods in Psychological Research. Thousand Oaks, CA: SAGE Publications; 2014.
  • Kantowitz, BH, Roediger, HL, & Elmes, DG. Experimental Psychology. Stamfort, CT: Cengage Learning; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • What Are Control Variables | Definition & Examples

What Are Control Variables? | Definition & Examples

Published on 4 May 2022 by Pritha Bhandari . Revised on 16 June 2023.

A control variable is anything that is held constant or limited in a research study. It’s a variable that is not of interest to the study’s aims but is controlled because it could influence the outcomes.

Variables may be controlled directly by holding them constant throughout a study (e.g., by controlling the room temperature in an experiment), or they may be controlled indirectly through methods like randomisation or statistical control (e.g., to account for participant characteristics like age in statistical tests).

Control variables

Examples of control variables
Research question Control variables
Does soil quality affect plant growth?
Does caffeine improve memory recall?
Do people with a fear of spiders perceive spider images faster than other people?

Table of contents

Why do control variables matter, how do you control a variable, control variable vs control group, frequently asked questions about control variables.

Control variables enhance the internal validity of a study by limiting the influence of confounding and other extraneous variables . This helps you establish a correlational or causal relationship between your variables of interest.

Aside from the independent and dependent variables , all variables that can impact the results should be controlled. If you don’t control relevant variables, you may not be able to demonstrate that they didn’t influence your results. Uncontrolled variables are alternative explanations for your results.

Control variables in experiments

In an experiment , a researcher is interested in understanding the effect of an independent variable on a dependent variable. Control variables help you ensure that your results are solely caused by your experimental manipulation.

The independent variable is whether the vitamin D supplement is added to a diet, and the dependent variable is the level of alertness.

To make sure any change in alertness is caused by the vitamin D supplement and not by other factors, you control these variables that might affect alertness:

  • Timing of meals
  • Caffeine intake
  • Screen time

Control variables in non-experimental research

In an observational study or other types of non-experimental research, a researcher can’t manipulate the independent variable (often due to practical or ethical considerations ). Instead, control variables are measured and taken into account to infer relationships between the main variables of interest.

To account for other factors that are likely to influence the results, you also measure these control variables:

  • Marital status

Prevent plagiarism, run a free check.

There are several ways to control extraneous variables in experimental designs, and some of these can also be used in observational or quasi-experimental designs.

Random assignment

In experimental studies with multiple groups, participants should be randomly assigned to the different conditions. Random assignment helps you balance the characteristics of groups so that there are no systematic differences between them.

This method of assignment controls participant variables that might otherwise differ between groups and skew your results.

It’s possible that the participants who found the study through Facebook have more screen time during the day, and this might influence how alert they are in your study.

Standardised procedures

It’s important to use the same procedures across all groups in an experiment. The groups should only differ in the independent variable manipulation so that you can isolate its effect on the dependent variable (the results).

To control variables, you can hold them constant at a fixed level using a protocol that you design and use for all participant sessions. For example, the instructions and time spent on an experimental task should be the same for all participants in a laboratory setting.

  • To control for diet, fresh and frozen meals are delivered to participants three times a day.
  • To control meal timings, participants are instructed to eat breakfast at 9:30, lunch at 13:00, and dinner at 18:30.
  • To control caffeine intake, participants are asked to consume a maximum of one cup of coffee a day.

Statistical controls

You can measure and control for extraneous variables statistically to remove their effects on other variables.

“Controlling for a variable” means modelling control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

A control variable isn’t the same as a control group . Control variables are held constant or measured throughout a study for both control and experimental groups, while an independent variable varies between control and experimental groups.

A control group doesn’t undergo the experimental treatment of interest, and its outcomes are compared with those of the experimental group. A control group usually has either no treatment, a standard treatment that’s already widely used, or a placebo (a fake treatment).

Aside from the experimental treatment, everything else in an experimental procedure should be the same between an experimental and control group.

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

‘Controlling for a variable’ means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2023, June 16). What Are Control Variables? | Definition & Examples. Scribbr. Retrieved 23 September 2024, from https://www.scribbr.co.uk/research-methods/control-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, types of variables in research | definitions & examples, controlled experiments | methods & examples of control, a quick guide to experimental design | 5 steps & examples.

science education resource

  • Activities, Experiments, Online Games, Visual Aids
  • Activities, Experiments, and Investigations
  • Experimental Design and the Scientific Method

Experimental Design - Independent, Dependent, and Controlled Variables

To view these resources with no ads, please login or subscribe to help support our content development. school subscriptions can access more than 175 downloadable unit bundles in our store for free (a value of $1,500). district subscriptions provide huge group discounts for their schools. email for a quote: [email protected] ..

Scientific experiments are meant to show cause and effect of a phenomena (relationships in nature).  The “ variables ” are any factor, trait, or condition that can be changed in the experiment and that can have an effect on the outcome of the experiment.

An experiment can have three kinds of variables: i ndependent, dependent, and controlled .

  • The independent variable is one single factor that is changed by the scientist followed by observation to watch for changes. It is important that there is just one independent variable, so that results are not confusing.
  • The dependent variable is the factor that changes as a result of the change to the independent variable.
  • The controlled variables (or constant variables) are factors that the scientist wants to remain constant if the experiment is to show accurate results. To be able to measure results, each of the variables must be able to be measured.

For example, let’s design an experiment with two plants sitting in the sun side by side. The controlled variables (or constants) are that at the beginning of the experiment, the plants are the same size, get the same amount of sunlight, experience the same ambient temperature and are in the same amount and consistency of soil (the weight of the soil and container should be measured before the plants are added). The independent variable is that one plant is getting watered (1 cup of water) every day and one plant is getting watered (1 cup of water) once a week. The dependent variables are the changes in the two plants that the scientist observes over time.

Experimental Design - Independent, Dependent, and Controlled Variables

Can you describe the dependent variable that may result from this experiment? After four weeks, the dependent variable may be that one plant is taller, heavier and more developed than the other. These results can be recorded and graphed by measuring and comparing both plants’ height, weight (removing the weight of the soil and container recorded beforehand) and a comparison of observable foliage.

Using What You Learned: Design another experiment using the two plants, but change the independent variable. Can you describe the dependent variable that may result from this new experiment?

Think of another simple experiment and name the independent, dependent, and controlled variables. Use the graphic organizer included in the PDF below to organize your experiment's variables.

Please Login or Subscribe to access downloadable content.

Citing Research References

When you research information you must cite the reference. Citing for websites is different from citing from books, magazines and periodicals. The style of citing shown here is from the MLA Style Citations (Modern Language Association).

When citing a WEBSITE the general format is as follows. Author Last Name, First Name(s). "Title: Subtitle of Part of Web Page, if appropriate." Title: Subtitle: Section of Page if appropriate. Sponsoring/Publishing Agency, If Given. Additional significant descriptive information. Date of Electronic Publication or other Date, such as Last Updated. Day Month Year of access < URL >.

Here is an example of citing this page:

Amsel, Sheri. "Experimental Design - Independent, Dependent, and Controlled Variables" Exploring Nature Educational Resource ©2005-2024. March 25, 2024 < http://www.exploringnature.org/db/view/Experimental-Design-Independent-Dependent-and-Controlled-Variables >

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

Exploringnature.org has more than 2,000 illustrated animals. Read about them, color them, label them, learn to draw them.

Sciencing_Icons_Science SCIENCE

Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic &amp; molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids &amp; bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals &amp; rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants &amp; mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition &amp; subtraction addition & subtraction, sciencing_icons_multiplication &amp; division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations &amp; expressions equations & expressions, sciencing_icons_ratios &amp; proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents &amp; logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.

  • Share Tweet Email Print
  • Home ⋅
  • Science Fair Project Ideas for Kids, Middle & High School Students ⋅
  • Probability & Statistics

What Is a Constant in the Scientific Method?

what is constant variable in research method

Can a Science Experiment Have Two Manipulated Variables?

The scientific method forms the foundation of the collective knowledge of the world around us. It is how researchers figure out what is likely true in nature. A scientific method experiment begins with a hypothesis, which is an informed opinion that explains why certain things occur the way they do. In science, hypotheses lead to predictions. These are measurable events that occur during an experiment if the hypothesis is true. The most significant components of the scientific method include hypotheses, dependent and independent variables, constant variables and control groups.

TL;DR (Too Long; Didn't Read)

A constant variable is an aspect of an experiment that a scientist or researcher keeps unchanged. There can be more than one constant in an experiment.

Through rigorous experimentation and corroboration, which requires other scientists to duplicate the same result as the first, a scientist's hypothesis is either confirmed or proven incorrect. While many people think of only men and women in white lab coats using the scientific method, it is an intuitive process. If you've ever asked yourself whether something is true or why something is the way it is—why is the sky blue?—you've performed the first step of the scientific method.

Why the Scientific Method Is Important

There is a good reason teachers introduce the scientific method early in a science class. It's the most important fundamental tool of science. Without the scientific method, there would be no way for scientists to agree on what is likely true and what is not.

The term "science" comes from the Latin word for "knowing." The scientific method is the process used to know that a new idea is valid. The confirmation of these new ideas has both theoretical and practical implications. For example, they can increase our knowledge of the universe and how it works. New ideas can lead to the development of inventions that change how people live.

There are three types of variables used in scientific experiments: constant, independent and dependent.

A constant variable is any aspect of an experiment that a researcher intentionally keeps unchanged throughout an experiment.

Experiments are always testing for measurable change, which is the dependent variable. You can also think of a dependent variable as the result obtained from an experiment. It is dependent on the change that occurs. Scientists introduce an independent variable to an experiment to create a change in the dependent variable. There can only be one independent variable in each experiment, but there will normally be many constant variables.

To illustrate a constant variable by looking at an example, let's say a new drug comes out that claims to make it easier to lose weight. Each scientific experiment can only focus on one independent variable or make one change at a time. If researchers gave a group of people this new drug and also increased the amount of exercise each person in the study did, it would complicate the picture. Scientists wouldn't be able to tell whether the pill or the exercise was responsible for any changes in weight, the dependent variable.

To ensure that only one independent variable exists, everything else is held constant. So, the constant variables in this experiment investigating the effects of the diet pill would be variables like the number of calories consumed by each participant, the amount of exercise they get, how much sleep they receive, etc. The constants are all the other aspects that are held the same for each participant.

Difference Between a Control and a Constant

You may think that a constant is the same thing as a control, but there is a difference. A control is specifically set aside without any changes to give the researcher an objective picture of any changes in the independent variable. For studies of drugs, a placebo is the control. A person is not told whether they're taking a diet pill or a placebo. A control negates the possible effects of persons believing they are taking diet pills when they are not.

When using the experimental method, it is critical to understand which variables are constants and which are controls. This helps to ensure any changes to the dependent variable are a result of the independent variable alone.

Related Articles

Why should you only test for one variable at a time..., how to eliminate bias in qualitative research, what is the meaning of variables in research, what are comparative experiments, what is a standardized variable in biology, 10 characteristics of a science experiment, the definition of an uncontrolled variable, what are constants & controls of a science project..., difference between proposition & hypothesis, definitions of control, constant, independent and dependent..., what is the difference between a control & a controlled..., differences between within & between subjects design, distinguishing between descriptive & causal studies, the difference between systematic & random errors, what is a positive control in microbiology, steps & procedures for conducting scientific research, what is normative & descriptive science, what are the independent variables for a moldy bread....

  • The Sourcebook for Teaching Science
  • Web Center for Social Research Methods

About the Author

Amanda Cook holds a Bachelor of Science in Microbiology and a Doctorate in Health and Human Performance from Middle Tennessee State University. She has been writing online professionally since 2009.

Find Your Next Great Science Fair Project! GO

  • Privacy Policy

Research Method

Home » Experimental Design – Types, Methods, Guide

Experimental Design – Types, Methods, Guide

Table of Contents

Experimental Research Design

Experimental Design

Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results.

Experimental design typically includes identifying the variables that will be manipulated or measured, defining the sample or population to be studied, selecting an appropriate method of sampling, choosing a method for data collection and analysis, and determining the appropriate statistical tests to use.

Types of Experimental Design

Here are the different types of experimental design:

Completely Randomized Design

In this design, participants are randomly assigned to one of two or more groups, and each group is exposed to a different treatment or condition.

Randomized Block Design

This design involves dividing participants into blocks based on a specific characteristic, such as age or gender, and then randomly assigning participants within each block to one of two or more treatment groups.

Factorial Design

In a factorial design, participants are randomly assigned to one of several groups, each of which receives a different combination of two or more independent variables.

Repeated Measures Design

In this design, each participant is exposed to all of the different treatments or conditions, either in a random order or in a predetermined order.

Crossover Design

This design involves randomly assigning participants to one of two or more treatment groups, with each group receiving one treatment during the first phase of the study and then switching to a different treatment during the second phase.

Split-plot Design

In this design, the researcher manipulates one or more variables at different levels and uses a randomized block design to control for other variables.

Nested Design

This design involves grouping participants within larger units, such as schools or households, and then randomly assigning these units to different treatment groups.

Laboratory Experiment

Laboratory experiments are conducted under controlled conditions, which allows for greater precision and accuracy. However, because laboratory conditions are not always representative of real-world conditions, the results of these experiments may not be generalizable to the population at large.

Field Experiment

Field experiments are conducted in naturalistic settings and allow for more realistic observations. However, because field experiments are not as controlled as laboratory experiments, they may be subject to more sources of error.

Experimental Design Methods

Experimental design methods refer to the techniques and procedures used to design and conduct experiments in scientific research. Here are some common experimental design methods:

Randomization

This involves randomly assigning participants to different groups or treatments to ensure that any observed differences between groups are due to the treatment and not to other factors.

Control Group

The use of a control group is an important experimental design method that involves having a group of participants that do not receive the treatment or intervention being studied. The control group is used as a baseline to compare the effects of the treatment group.

Blinding involves keeping participants, researchers, or both unaware of which treatment group participants are in, in order to reduce the risk of bias in the results.

Counterbalancing

This involves systematically varying the order in which participants receive treatments or interventions in order to control for order effects.

Replication

Replication involves conducting the same experiment with different samples or under different conditions to increase the reliability and validity of the results.

This experimental design method involves manipulating multiple independent variables simultaneously to investigate their combined effects on the dependent variable.

This involves dividing participants into subgroups or blocks based on specific characteristics, such as age or gender, in order to reduce the risk of confounding variables.

Data Collection Method

Experimental design data collection methods are techniques and procedures used to collect data in experimental research. Here are some common experimental design data collection methods:

Direct Observation

This method involves observing and recording the behavior or phenomenon of interest in real time. It may involve the use of structured or unstructured observation, and may be conducted in a laboratory or naturalistic setting.

Self-report Measures

Self-report measures involve asking participants to report their thoughts, feelings, or behaviors using questionnaires, surveys, or interviews. These measures may be administered in person or online.

Behavioral Measures

Behavioral measures involve measuring participants’ behavior directly, such as through reaction time tasks or performance tests. These measures may be administered using specialized equipment or software.

Physiological Measures

Physiological measures involve measuring participants’ physiological responses, such as heart rate, blood pressure, or brain activity, using specialized equipment. These measures may be invasive or non-invasive, and may be administered in a laboratory or clinical setting.

Archival Data

Archival data involves using existing records or data, such as medical records, administrative records, or historical documents, as a source of information. These data may be collected from public or private sources.

Computerized Measures

Computerized measures involve using software or computer programs to collect data on participants’ behavior or responses. These measures may include reaction time tasks, cognitive tests, or other types of computer-based assessments.

Video Recording

Video recording involves recording participants’ behavior or interactions using cameras or other recording equipment. This method can be used to capture detailed information about participants’ behavior or to analyze social interactions.

Data Analysis Method

Experimental design data analysis methods refer to the statistical techniques and procedures used to analyze data collected in experimental research. Here are some common experimental design data analysis methods:

Descriptive Statistics

Descriptive statistics are used to summarize and describe the data collected in the study. This includes measures such as mean, median, mode, range, and standard deviation.

Inferential Statistics

Inferential statistics are used to make inferences or generalizations about a larger population based on the data collected in the study. This includes hypothesis testing and estimation.

Analysis of Variance (ANOVA)

ANOVA is a statistical technique used to compare means across two or more groups in order to determine whether there are significant differences between the groups. There are several types of ANOVA, including one-way ANOVA, two-way ANOVA, and repeated measures ANOVA.

Regression Analysis

Regression analysis is used to model the relationship between two or more variables in order to determine the strength and direction of the relationship. There are several types of regression analysis, including linear regression, logistic regression, and multiple regression.

Factor Analysis

Factor analysis is used to identify underlying factors or dimensions in a set of variables. This can be used to reduce the complexity of the data and identify patterns in the data.

Structural Equation Modeling (SEM)

SEM is a statistical technique used to model complex relationships between variables. It can be used to test complex theories and models of causality.

Cluster Analysis

Cluster analysis is used to group similar cases or observations together based on similarities or differences in their characteristics.

Time Series Analysis

Time series analysis is used to analyze data collected over time in order to identify trends, patterns, or changes in the data.

Multilevel Modeling

Multilevel modeling is used to analyze data that is nested within multiple levels, such as students nested within schools or employees nested within companies.

Applications of Experimental Design 

Experimental design is a versatile research methodology that can be applied in many fields. Here are some applications of experimental design:

  • Medical Research: Experimental design is commonly used to test new treatments or medications for various medical conditions. This includes clinical trials to evaluate the safety and effectiveness of new drugs or medical devices.
  • Agriculture : Experimental design is used to test new crop varieties, fertilizers, and other agricultural practices. This includes randomized field trials to evaluate the effects of different treatments on crop yield, quality, and pest resistance.
  • Environmental science: Experimental design is used to study the effects of environmental factors, such as pollution or climate change, on ecosystems and wildlife. This includes controlled experiments to study the effects of pollutants on plant growth or animal behavior.
  • Psychology : Experimental design is used to study human behavior and cognitive processes. This includes experiments to test the effects of different interventions, such as therapy or medication, on mental health outcomes.
  • Engineering : Experimental design is used to test new materials, designs, and manufacturing processes in engineering applications. This includes laboratory experiments to test the strength and durability of new materials, or field experiments to test the performance of new technologies.
  • Education : Experimental design is used to evaluate the effectiveness of teaching methods, educational interventions, and programs. This includes randomized controlled trials to compare different teaching methods or evaluate the impact of educational programs on student outcomes.
  • Marketing : Experimental design is used to test the effectiveness of marketing campaigns, pricing strategies, and product designs. This includes experiments to test the impact of different marketing messages or pricing schemes on consumer behavior.

Examples of Experimental Design 

Here are some examples of experimental design in different fields:

  • Example in Medical research : A study that investigates the effectiveness of a new drug treatment for a particular condition. Patients are randomly assigned to either a treatment group or a control group, with the treatment group receiving the new drug and the control group receiving a placebo. The outcomes, such as improvement in symptoms or side effects, are measured and compared between the two groups.
  • Example in Education research: A study that examines the impact of a new teaching method on student learning outcomes. Students are randomly assigned to either a group that receives the new teaching method or a group that receives the traditional teaching method. Student achievement is measured before and after the intervention, and the results are compared between the two groups.
  • Example in Environmental science: A study that tests the effectiveness of a new method for reducing pollution in a river. Two sections of the river are selected, with one section treated with the new method and the other section left untreated. The water quality is measured before and after the intervention, and the results are compared between the two sections.
  • Example in Marketing research: A study that investigates the impact of a new advertising campaign on consumer behavior. Participants are randomly assigned to either a group that is exposed to the new campaign or a group that is not. Their behavior, such as purchasing or product awareness, is measured and compared between the two groups.
  • Example in Social psychology: A study that examines the effect of a new social intervention on reducing prejudice towards a marginalized group. Participants are randomly assigned to either a group that receives the intervention or a control group that does not. Their attitudes and behavior towards the marginalized group are measured before and after the intervention, and the results are compared between the two groups.

When to use Experimental Research Design 

Experimental research design should be used when a researcher wants to establish a cause-and-effect relationship between variables. It is particularly useful when studying the impact of an intervention or treatment on a particular outcome.

Here are some situations where experimental research design may be appropriate:

  • When studying the effects of a new drug or medical treatment: Experimental research design is commonly used in medical research to test the effectiveness and safety of new drugs or medical treatments. By randomly assigning patients to treatment and control groups, researchers can determine whether the treatment is effective in improving health outcomes.
  • When evaluating the effectiveness of an educational intervention: An experimental research design can be used to evaluate the impact of a new teaching method or educational program on student learning outcomes. By randomly assigning students to treatment and control groups, researchers can determine whether the intervention is effective in improving academic performance.
  • When testing the effectiveness of a marketing campaign: An experimental research design can be used to test the effectiveness of different marketing messages or strategies. By randomly assigning participants to treatment and control groups, researchers can determine whether the marketing campaign is effective in changing consumer behavior.
  • When studying the effects of an environmental intervention: Experimental research design can be used to study the impact of environmental interventions, such as pollution reduction programs or conservation efforts. By randomly assigning locations or areas to treatment and control groups, researchers can determine whether the intervention is effective in improving environmental outcomes.
  • When testing the effects of a new technology: An experimental research design can be used to test the effectiveness and safety of new technologies or engineering designs. By randomly assigning participants or locations to treatment and control groups, researchers can determine whether the new technology is effective in achieving its intended purpose.

How to Conduct Experimental Research

Here are the steps to conduct Experimental Research:

  • Identify a Research Question : Start by identifying a research question that you want to answer through the experiment. The question should be clear, specific, and testable.
  • Develop a Hypothesis: Based on your research question, develop a hypothesis that predicts the relationship between the independent and dependent variables. The hypothesis should be clear and testable.
  • Design the Experiment : Determine the type of experimental design you will use, such as a between-subjects design or a within-subjects design. Also, decide on the experimental conditions, such as the number of independent variables, the levels of the independent variable, and the dependent variable to be measured.
  • Select Participants: Select the participants who will take part in the experiment. They should be representative of the population you are interested in studying.
  • Randomly Assign Participants to Groups: If you are using a between-subjects design, randomly assign participants to groups to control for individual differences.
  • Conduct the Experiment : Conduct the experiment by manipulating the independent variable(s) and measuring the dependent variable(s) across the different conditions.
  • Analyze the Data: Analyze the data using appropriate statistical methods to determine if there is a significant effect of the independent variable(s) on the dependent variable(s).
  • Draw Conclusions: Based on the data analysis, draw conclusions about the relationship between the independent and dependent variables. If the results support the hypothesis, then it is accepted. If the results do not support the hypothesis, then it is rejected.
  • Communicate the Results: Finally, communicate the results of the experiment through a research report or presentation. Include the purpose of the study, the methods used, the results obtained, and the conclusions drawn.

Purpose of Experimental Design 

The purpose of experimental design is to control and manipulate one or more independent variables to determine their effect on a dependent variable. Experimental design allows researchers to systematically investigate causal relationships between variables, and to establish cause-and-effect relationships between the independent and dependent variables. Through experimental design, researchers can test hypotheses and make inferences about the population from which the sample was drawn.

Experimental design provides a structured approach to designing and conducting experiments, ensuring that the results are reliable and valid. By carefully controlling for extraneous variables that may affect the outcome of the study, experimental design allows researchers to isolate the effect of the independent variable(s) on the dependent variable(s), and to minimize the influence of other factors that may confound the results.

Experimental design also allows researchers to generalize their findings to the larger population from which the sample was drawn. By randomly selecting participants and using statistical techniques to analyze the data, researchers can make inferences about the larger population with a high degree of confidence.

Overall, the purpose of experimental design is to provide a rigorous, systematic, and scientific method for testing hypotheses and establishing cause-and-effect relationships between variables. Experimental design is a powerful tool for advancing scientific knowledge and informing evidence-based practice in various fields, including psychology, biology, medicine, engineering, and social sciences.

Advantages of Experimental Design 

Experimental design offers several advantages in research. Here are some of the main advantages:

  • Control over extraneous variables: Experimental design allows researchers to control for extraneous variables that may affect the outcome of the study. By manipulating the independent variable and holding all other variables constant, researchers can isolate the effect of the independent variable on the dependent variable.
  • Establishing causality: Experimental design allows researchers to establish causality by manipulating the independent variable and observing its effect on the dependent variable. This allows researchers to determine whether changes in the independent variable cause changes in the dependent variable.
  • Replication : Experimental design allows researchers to replicate their experiments to ensure that the findings are consistent and reliable. Replication is important for establishing the validity and generalizability of the findings.
  • Random assignment: Experimental design often involves randomly assigning participants to conditions. This helps to ensure that individual differences between participants are evenly distributed across conditions, which increases the internal validity of the study.
  • Precision : Experimental design allows researchers to measure variables with precision, which can increase the accuracy and reliability of the data.
  • Generalizability : If the study is well-designed, experimental design can increase the generalizability of the findings. By controlling for extraneous variables and using random assignment, researchers can increase the likelihood that the findings will apply to other populations and contexts.

Limitations of Experimental Design

Experimental design has some limitations that researchers should be aware of. Here are some of the main limitations:

  • Artificiality : Experimental design often involves creating artificial situations that may not reflect real-world situations. This can limit the external validity of the findings, or the extent to which the findings can be generalized to real-world settings.
  • Ethical concerns: Some experimental designs may raise ethical concerns, particularly if they involve manipulating variables that could cause harm to participants or if they involve deception.
  • Participant bias : Participants in experimental studies may modify their behavior in response to the experiment, which can lead to participant bias.
  • Limited generalizability: The conditions of the experiment may not reflect the complexities of real-world situations. As a result, the findings may not be applicable to all populations and contexts.
  • Cost and time : Experimental design can be expensive and time-consuming, particularly if the experiment requires specialized equipment or if the sample size is large.
  • Researcher bias : Researchers may unintentionally bias the results of the experiment if they have expectations or preferences for certain outcomes.
  • Lack of feasibility : Experimental design may not be feasible in some cases, particularly if the research question involves variables that cannot be manipulated or controlled.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Textual Analysis

Textual Analysis – Types, Examples and Guide

Questionnaire

Questionnaire – Definition, Types, and Examples

Observational Research

Observational Research – Methods and Guide

Descriptive Research Design

Descriptive Research Design – Types, Methods and...

Survey Research

Survey Research – Types, Methods, Examples

what is constant variable in research method

  • Organizations
  • Planning & Activities
  • Product & Services
  • Structure & Systems
  • Career & Education
  • Entertainment
  • Fashion & Beauty
  • Political Institutions
  • SmartPhones
  • Protocols & Formats
  • Communication
  • Web Applications
  • Household Equipments
  • Career and Certifications
  • Diet & Fitness
  • Mathematics & Statistics
  • Processed Foods
  • Vegetables & Fruits

Difference Between Constant and Control

• Categorized under Physics , Science | Difference Between Constant and Control

As scientists continue to figure out how nature works, they do so by use of experiments, with an aim of searching for cause and effect relationships. These relationships are used to explain why things happen and allow one to predict what will happen if a certain event occurs. The role of these experiments hence is to observe and measure how changes occur in relation to other things. In an experiment, the things that change are referred to as variables.  

what is constant variable in research method

What is a Constant?

These are values that do not change during experiments.  

For example, in an experiment where one wants to test how the growth of plants is affected by the amount of water, factors like type of soil, temperature, type of plant and sunlight all stay the same in the course of the experiment. These are hence referred to as the constants in this experiment, while the amount of water is the control.    

Other examples include freezing and boiling points of water, the speed of light,  

what is constant variable in research method

What is Controls?

A controlled variable is a variable that could change but is intentionally kept constant in order to clearly show the relationship between dependent and independent variables. It is also a variable that is not of primary interest and hence constitutes a third factor whose influence is to be controlled or eliminated. These variables either need to be kept constant during the experiment or be monitored and recorded. This ensures that their influence can be assessed. Most experiments have more than one control.  

An example used to explain control variable is the effect of fertilizers on a plants growth, whereby the growth of plants differs based on the amount of fertilizer used. The fertilizer, in this case, is the control variable.  

Other examples include time, pressure and temperature.

Similarities between Constant Vs. Control

  • Both are important in experiments as they determine the outcome

Differences between Constant and Control

A constant variable does not change. A control variable on the other hand changes, but is intentionally kept constant throughout the experiment so as to show the relationship between dependent and independent variables.  

Primary interest

While the constant is the variable of primary interest, the control is not; hence its influence can be controlled or eliminated.  

Constant vs. Control: Comparison Table

what is constant variable in research method

Summary of Constant vs. Control

In an experiment, both constant and control variables are important as they influence the outcomes of the experiments.  

  • Recent Posts
  • Difference Between Profit Center and Investment Center - July 2, 2022
  • Difference Between Anti-Trust and Anti-Competition - June 6, 2022
  • Difference Between Stocktaking and Stock Control - June 6, 2022

Sharing is caring!

  • Pinterest 4

Search DifferenceBetween.net :

Email This Post

  • Difference Between Dependent Variables and Independent Variables
  • Difference Between Study and Experiment
  • Difference Between Experiment and Survey
  • Difference Between Observational Study and Experiments
  • Difference Between Science and Social Science

Cite APA 7 Njogu, T. (2019, June 24). Difference Between Constant and Control. Difference Between Similar Terms and Objects. http://www.differencebetween.net/science/difference-between-constant-and-control/. MLA 8 Njogu, Tabitha. "Difference Between Constant and Control." Difference Between Similar Terms and Objects, 24 June, 2019, http://www.differencebetween.net/science/difference-between-constant-and-control/.

Leave a Response

Name ( required )

Email ( required )

Please note: comment moderation is enabled and may delay your comment. There is no need to resubmit your comment.

Notify me of followup comments via e-mail

References :

Advertisments, more in 'physics'.

  • Difference Between Velocity and Speed
  • Difference Between Humidity and Temperature
  • Difference Between Quantum Mechanics and General Relativity
  • Difference Between Torque and Force
  • Difference Between Leading and Lagging Power Factor

More in 'Science'

  • Difference Between Rumination and Regurgitation
  • Difference Between Pyelectasis and Hydronephrosis 
  • Difference Between Cellulitis and Erysipelas
  • Difference Between Suicide and Euthanasia
  • Difference Between Vitamin D and Vitamin D3

Top Difference Betweens

Get new comparisons in your inbox:, most emailed comparisons, editor's picks.

  • Difference Between MAC and IP Address
  • Difference Between Platinum and White Gold
  • Difference Between Civil and Criminal Law
  • Difference Between GRE and GMAT
  • Difference Between Immigrants and Refugees
  • Difference Between DNS and DHCP
  • Difference Between Computer Engineering and Computer Science
  • Difference Between Men and Women
  • Difference Between Book value and Market value
  • Difference Between Red and White wine
  • Difference Between Depreciation and Amortization
  • Difference Between Bank and Credit Union
  • Difference Between White Eggs and Brown Eggs

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • Science Experiments for Kids
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Independent and Dependent Variables Examples

The independent variable is the factor the researcher controls, while the dependent variable is the one that is measured.

The independent and dependent variables are key to any scientific experiment, but how do you tell them apart? Here are the definitions of independent and dependent variables, examples of each type, and tips for telling them apart and graphing them.

Independent Variable

The independent variable is the factor the researcher changes or controls in an experiment. It is called independent because it does not depend on any other variable. The independent variable may be called the “controlled variable” because it is the one that is changed or controlled. This is different from the “ control variable ,” which is variable that is held constant so it won’t influence the outcome of the experiment.

Dependent Variable

The dependent variable is the factor that changes in response to the independent variable. It is the variable that you measure in an experiment. The dependent variable may be called the “responding variable.”

Examples of Independent and Dependent Variables

Here are several examples of independent and dependent variables in experiments:

  • In a study to determine whether how long a student sleeps affects test scores, the independent variable is the length of time spent sleeping while the dependent variable is the test score.
  • You want to know which brand of fertilizer is best for your plants. The brand of fertilizer is the independent variable. The health of the plants (height, amount and size of flowers and fruit, color) is the dependent variable.
  • You want to compare brands of paper towels, to see which holds the most liquid. The independent variable is the brand of paper towel. The dependent variable is the volume of liquid absorbed by the paper towel.
  • You suspect the amount of television a person watches is related to their age. Age is the independent variable. How many minutes or hours of television a person watches is the dependent variable.
  • You think rising sea temperatures might affect the amount of algae in the water. The water temperature is the independent variable. The mass of algae is the dependent variable.
  • In an experiment to determine how far people can see into the infrared part of the spectrum, the wavelength of light is the independent variable and whether the light is observed is the dependent variable.
  • If you want to know whether caffeine affects your appetite, the presence/absence or amount of caffeine is the independent variable. Appetite is the dependent variable.
  • You want to know which brand of microwave popcorn pops the best. The brand of popcorn is the independent variable. The number of popped kernels is the dependent variable. Of course, you could also measure the number of unpopped kernels instead.
  • You want to determine whether a chemical is essential for rat nutrition, so you design an experiment. The presence/absence of the chemical is the independent variable. The health of the rat (whether it lives and reproduces) is the dependent variable. A follow-up experiment might determine how much of the chemical is needed. Here, the amount of chemical is the independent variable and the rat health is the dependent variable.

How to Tell the Independent and Dependent Variable Apart

If you’re having trouble identifying the independent and dependent variable, here are a few ways to tell them apart. First, remember the dependent variable depends on the independent variable. It helps to write out the variables as an if-then or cause-and-effect sentence that shows the independent variable causes an effect on the dependent variable. If you mix up the variables, the sentence won’t make sense. Example : The amount of eat (independent variable) affects how much you weigh (dependent variable).

This makes sense, but if you write the sentence the other way, you can tell it’s incorrect: Example : How much you weigh affects how much you eat. (Well, it could make sense, but you can see it’s an entirely different experiment.) If-then statements also work: Example : If you change the color of light (independent variable), then it affects plant growth (dependent variable). Switching the variables makes no sense: Example : If plant growth rate changes, then it affects the color of light. Sometimes you don’t control either variable, like when you gather data to see if there is a relationship between two factors. This can make identifying the variables a bit trickier, but establishing a logical cause and effect relationship helps: Example : If you increase age (independent variable), then average salary increases (dependent variable). If you switch them, the statement doesn’t make sense: Example : If you increase salary, then age increases.

How to Graph Independent and Dependent Variables

Plot or graph independent and dependent variables using the standard method. The independent variable is the x-axis, while the dependent variable is the y-axis. Remember the acronym DRY MIX to keep the variables straight: D = Dependent variable R = Responding variable/ Y = Graph on the y-axis or vertical axis M = Manipulated variable I = Independent variable X = Graph on the x-axis or horizontal axis

  • Babbie, Earl R. (2009). The Practice of Social Research (12th ed.) Wadsworth Publishing. ISBN 0-495-59841-0.
  • di Francia, G. Toraldo (1981). The Investigation of the Physical World . Cambridge University Press. ISBN 978-0-521-29925-1.
  • Gauch, Hugh G. Jr. (2003). Scientific Method in Practice . Cambridge University Press. ISBN 978-0-521-01708-4.
  • Popper, Karl R. (2003). Conjectures and Refutations: The Growth of Scientific Knowledge . Routledge. ISBN 0-415-28594-1.

Related Posts

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Independent vs. Dependent Variables | Definition & Examples

Independent vs. Dependent Variables | Definition & Examples

Published on February 3, 2022 by Pritha Bhandari . Revised on June 22, 2023.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs. dependent variables, independent and dependent variables in research, visualizing independent and dependent variables, other interesting articles, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

what is constant variable in research method

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group (to research a possible placebo effect )

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment. Note that any research methods that use non-random assignment are at risk for research biases like selection bias and sampling bias .

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it “depends” on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic research paper .

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design .

Here are some tips for identifying each variable type.

Recognizing independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognizing dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

Research question Independent variable Dependent variable(s)
Do tomatoes grow fastest under fluorescent, incandescent, or natural light?
What is the effect of intermittent fasting on blood sugar levels?
Is medical marijuana effective for pain reduction in people with chronic pain?
To what extent does remote working increase job satisfaction?

For experimental data, you analyze your results by generating descriptive statistics and visualizing your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • your variable types
  • level of measurement
  • number of independent variable levels.

You’ll often use t tests or ANOVAs to analyze your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualize the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualization you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatter plot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Independent vs. Dependent Variables | Definition & Examples. Scribbr. Retrieved September 26, 2024, from https://www.scribbr.com/methodology/independent-and-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, explanatory and response variables | definitions & examples, confounding variables | definition, examples & controls, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

What Is an Experimental Constant?

Explanation and Examples of Constants

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

A constant is a quantity that does not change. Although you can measure a constant, you either cannot alter it during an experiment or else you choose not to change it. Contrast this with an experimental variable , which is the part of an  experiment that you change or that is affected by the experiment. There are two main types of constants you may encounter in experiments: true constants and control constants. Here is an explanation of these constants, with examples.

Physical Constants

Physical constants are quantities which you cannot change. They may be calculated or defined.

Examples: Avogadro's number, pi, the speed of light, Planck's constant

Control Constants

Control constants or control variables are quantities a researcher holds steady during an experiment. Even though the value or state of a control constant may not change, it is important to record the constant so the experiment may be reproduced.

Examples: temperature, day/night, duration of a test, pH

  • Random Error vs. Systematic Error
  • Six Steps of the Scientific Method
  • What Is the Difference Between a Control Variable and Control Group?
  • Null Hypothesis Examples
  • Scientific Method Vocabulary Terms
  • What Is a Controlled Experiment?
  • What Is a Testable Hypothesis?
  • Scientific Hypothesis Examples
  • DRY MIX Experiment Variables Acronym
  • Understanding Simple vs Controlled Experiments
  • The Role of a Controlled Variable in an Experiment
  • What Are the Elements of a Good Hypothesis?
  • Scientific Variable
  • Scientific Method Flow Chart
  • What Is a Hypothesis? (Science)
  • What Are Examples of a Hypothesis?

What is constant variable in research method?

User Avatar

A constant variable in research method is a factors or quantities that never change. Constant variables always remain the same.

Add your answer:

imp

What is the research method in which the investigator manipulates a variable under carefully controlled conditions?

Experimental Method

What are variable of the scientific method?

what are the variable

Is a control variable same as a constant variable?

What are some examples of constant variables in science.

A constant variable is a variable that gets changed by a physical substance

What is the variable that stays the same?

A variable in an experiment that stays the same is a constant.

imp

Top Categories

Answers Logo

Research on the method of force-locking and variable stiffness for continuum robot with the spinal-like configuration

  • Technical Paper
  • Published: 25 September 2024
  • Volume 46 , article number  627 , ( 2024 )

Cite this article

what is constant variable in research method

  • Gang Chen 1 , 2 ,
  • Yutong Wu 2 ,
  • Jianxiao Zheng 2 ,
  • Hao Shi 3 ,
  • Fuping Li 1 &
  • Changgan Qin 1  

Explore all metrics

To solve the shortcomings of low stiffness brought by the high flexibility of continuum, but the variable stiffness method based on structure and phase change material has the problems of slow response and complex system, this paper takes the rope-driven flexible robotic arm as the research object, and proposes the design of spine-like continuum robot with force-locking variable stiffness arranged in the axial position, and investigates the performance of its variable stiffness. A reasonable structural design of the robot is obtained through bionic design and optimization of the bending structure. The theory's feasibility is analyzed based on tribology, and its variable stiffness system is simulated. The three joints and six degrees of freedom prototype are completed. Three experiments show that the method is fast responding, the stiffness of the robot is only controlled by adding an extra rope on the axis, and the structure is simple; and the comparison of the two configurations yields a continuum-raised robot configuration that is more suitable for the variable stiffness method proposed in this paper; and finally, the high flexibility is verified, and the relationship between stiffness and load and accuracy is verified. The research results make progress in the miniaturization, simplicity, and real-time performance of the variable stiffness method for continuum robots, which are helpful in the design of continuum robot configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

what is constant variable in research method

Data availability

The data used to support the findings of this study are included in the paper.

Webster RJ, Jones BA (2010) Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res 29(13):1661–1683

Article   Google Scholar  

Oliver-Butler K, Till J, Rucker C (2019) Continuum robot stiffness under external loads and prescribed tendon displacements. IEEE Trans Rob 35(2):403–419

Qin G et al (2023) Design and development of a cable-driven elephant trunk robot with variable cross-sections. Ind Robot Int J Robot Res Appl 50(3):520–529

Huang Z (2021) Research on trajectory planning and motion control of multi-joint snake robot (in Chinese). University of electronic science and technology of China

Pransky J (2016) The Pransky interview: Dr Rob Buckingham, director at UK atomic energy authority and robotics pioneer. Ind Robot 43(6):577–582

Buckingham R, Graham A (2012) Nuclear snake-arm robots. Ind Robot Int J 39(1):6–11

Djeffal S, Mahfoudi C, Amouri A (2021) Comparison of three meta-heuristic algorithms for solving inverse kinematics problems of variable curvature continuum robots. In: 2021 European conference on mobile robots (ECMR), pp 1–6. https://doi.org/10.1109/ECMR50962.2021.9568789

Amouri A et al (2023) Bio-inspired a novel dual-cross-module sections cable-driven continuum robot: design, kinematics modeling and workspace analysis. J Braz Soc Mech Sci Eng 45(5):8

Zhao B et al (2020) A continuum manipulator for continuously variable stiffness and its stiffness control formulation. Mech Mach Theory 149:103746

Shaikh SN, Thompson CC (2010) Natural orifice translumenal surgery: Flexible platform review. World J Gastrointest Surg 2(6):210–216. https://doi.org/10.4240/wjgs.v2.i6.210

Loeve A, Breedveld P, Dankelman J (2010) Scopes too dlexible and too stiff. IEEE Pulse 1(3):26–41

Wang L et al (2018) Controllable and reversible tuning of material rigidity for robot applications. Mater Today 21(5):563–576

Cianchetti M et al (2014) Soft robotics technologies to address shortcomings in today’s minimally invasive surgery: the STIFF-FLOP approach. Soft Rob 1(2):122–131

Khairudin M, Mohamed Z, Husain AR (2011) Dynamic model and robust control of flexible link robot manipulator. Telkomnika 9(2):279

Wang P et al (2022) Design and analysis of a novel variable stiffness continuum robot with built-in winding-styled ropes. IEEE Robot Autom Lett 7(3):6375–6382

Article   MathSciNet   Google Scholar  

Huan AS, Xu W and Ren H (2016) Investigation of a stiffness varying mechanism for flexible robotic system. IEEE

Cao Y (2019) Research on a variable-stiffness continuum manipulator for minimally invasive surgery (in Chinese). Nanjing university of aeronautics and astronautics

Jiang S et al (2020) A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery. Int J Med Robot Comput Assist Surg 16(2):2081

Nalini D, Ruth DJS and Dhanalakshmi K (2016) Design of a variable stiffness actuator using shape memory alloy wire. In: 2016 IEEE 7th power india international conference (PIICON), pp 1–5. https://doi.org/10.1109/POWERI.2016.8077234

Yang C et al (2020) Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness. Int J Robot Res 39(14):1620–1634

Liao T, Ho Tse ZT and Ren H (2019) Variable stiffness actuators embedded with soft-bodied polycaprolactone and shape memory alloy wires. In: 2019 IEEE/ASME international conference on advanced intelligent mechatronics (AIM), pp 108–113. https://doi.org/10.1109/AIM.2019.8868905

Spaggiari A (2013) Properties and applications of magnetorheological fluids. Frattura ed Integrità Strutturale 7(23):48–61

Clark AB, Rojas N (2019) Assessing the performance of variable stiffness continuum structures of large diameter. IEEE Robot Autom Lett 4(3):2455–2462. https://doi.org/10.1109/LRA.2019.2905980

Li Y, Ren T, Chen Y and Chen MZQ (2020) A variable stiffness soft continuum robot based on pre-charged air, particle jamming, and origami. In: 2020 IEEE international conference on robotics and automation (ICRA), pp 5869-5875. https://doi.org/10.1109/ICRA40945.2020.9196729

Li DCF, Wang Z, Ouyang B and Liu Y-H (2019) A reconfigurable variable stiffness manipulator by a sliding layer mechanism. In: 2019 international conference on robotics and automation (ICRA), pp 3976-3982. https://doi.org/10.1109/ICRA.2019.8793571

Kanada A, Mashimo T (2021) Switching between continuum and discrete states in a continuum robot with dislocatable joints. IEEE Access 9:34859–34867

Zuo S et al (2014) Variable stiffness outer sheath with “Dragon skin” structure and negative pneumatic shape-locking mechanism. Int J Comput Assist Radiol Surg 9(5):857–865

Degani A, Choset H, Wolf A and Zenati MA (2006) Highly articulated robotic probe for minimally invasive surgery. In: Proceedings 2006 IEEE international conference on robotics and automation, pp 4167–4172. https://doi.org/10.1109/ROBOT.2006.1642343

Chen Y, Chang JH, Greenlee AS, Cheung KC, Slocum AH and Gupta R (2010) Multi-turn, tension-stiffening catheter navigation system. In: 2010 IEEE international conference on robotics and automation, pp 5570-5575. https://doi.org/10.1109/ROBOT.2010.5509786

Kim Y et al (2013) A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans Rob 29(4):1031–1042

Bilancia P, Berselli G (2021) Conceptual design and virtual prototyping of a wearable upper limb exoskeleton for assisted operations. Int J Interact Des Manuf 15(4):525–539

Kim Y et al (2014) A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery. IEEE Trans Rob 30(2):382–395. https://doi.org/10.1109/TRO.2013.2287975

Qu T (2023) Research on structure optimization and motion joint simulation of rope driven snake robot (in Chinese). Liaoning university of science and technology. https://doi.org/10.26923/dccnki .gasgc.2022.000319

Zhu X and Hu H (2021) A controllable stiffness robotics for natural orifice transluminal endoscopic surgery. In: 2021 4th world conference on mechanical engineering and intelligent manufacturing (WCMEIM), pp 45–48. https://doi.org/10.1109/WCMEIM54377.2021.00018

Download references

Acknowledgements

This work supported by the Project(2023-JC-YB-313) supported by the Natural Science Basic Research Plan-General Project of Shaanxi Province; Project(2023-JC-YB-294) supported by the Natural Science Basic Research Plan-General Project of Shaanxi Province; Project(2022KXJ032) Shaanxi Province Qin Chuangyuan " Scientists + Engineers" Team Construction; Project (52002309) supported by the National Natural Science Foundation of China.

Natural Science Basic Research Plan-General Project of Shaanxi Provinces, 2023 − JC − YB − 313, Jianxiao zheng,2023-JC-YB-294, Jianxiao zheng, Shaanxi Province Qin Chuangyuan ", 2022KXJ032, Jianxiao zheng, National Natural Science Foundation of China, 52002309, Jianxiao zheng

Author information

Authors and affiliations.

Jiaxing University, Jiaxing, 314000, China

Gang Chen, Fuping Li & Changgan Qin

Xi’an University of Architecture and Technology, Xi’an, 710055, China

Gang Chen, Yutong Wu & Jianxiao Zheng

Concrete Machinery Company, Zoomlion Heavy Industry Science & Technology Co., Ltd, Changsha, 410221, China

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jianxiao Zheng .

Ethics declarations

Conflict of interest.

The authors declare that they have no conflicts of interest.

Additional information

Technical Editor: Rogério Sales Gonçalves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Chen, G., Wu, Y., Zheng, J. et al. Research on the method of force-locking and variable stiffness for continuum robot with the spinal-like configuration. J Braz. Soc. Mech. Sci. Eng. 46 , 627 (2024). https://doi.org/10.1007/s40430-024-05130-3

Download citation

Received : 23 February 2024

Accepted : 30 July 2024

Published : 25 September 2024

DOI : https://doi.org/10.1007/s40430-024-05130-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Variable stiffness
  • Force-locking
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. PPT

    what is constant variable in research method

  2. Scientific method ppt

    what is constant variable in research method

  3. PPT

    what is constant variable in research method

  4. 27 Types of Variables in Research and Statistics (2024)

    what is constant variable in research method

  5. Types of Research Variable in Research with Example

    what is constant variable in research method

  6. PPT

    what is constant variable in research method

COMMENTS

  1. Definitions of Control, Constant, Independent and Dependent Variables

    The scientific method includes three main types of variables: constants, independent, and dependent variables. In a science experiment, each of these variables define a different measured or constrained aspect of the system. ... Sometimes also called a controlled variable. A constant is a variable that could change, but that the experimenter ...

  2. Control Variable

    Definition: Control variable, also known as a "constant variable," is a variable that is held constant or fixed during an experiment or study to prevent it from affecting the outcome. In other words, a control variable is a variable that is kept the same or held constant to isolate the effects of the independent variable on the dependent ...

  3. Variables in Research

    This is a variable that is held constant or controlled by the researcher to ensure that it does not affect the relationship between the independent variable and the dependent variable. ... There are different methods to analyze variables in research, including: Descriptive statistics: This involves analyzing and summarizing data using measures ...

  4. Control Variables

    A control variable is anything that is held constant or limited in a research study. It's a variable that is not of interest to the study's objectives, but is controlled because it could influence the outcomes. Variables may be controlled directly by holding them constant throughout a study (e.g., by controlling the room temperature in an ...

  5. What Is a Control Variable? Definition and Examples

    A control variable is any factor that is controlled or held constant in an experiment. A control variable is any factor that is controlled or held constant during an experiment. For this reason, it's also known as a controlled variable or a constant variable. A single experiment may contain many control variables.

  6. Types of Variables in Psychology Research

    The two main types of variables in psychology are the independent variable and the dependent variable. Both variables are important in the process of collecting data about psychological phenomena. This article discusses different types of variables that are used in psychology research. It also covers how to operationalize these variables when ...

  7. What Are Control Variables?

    A control variable is anything that is held constant or limited in a research study. It's a variable that is not of interest to the study's aims but is controlled because it could influence the outcomes. Variables may be controlled directly by holding them constant throughout a study (e.g., by controlling the room temperature in an ...

  8. PDF Variables, Constants, and Controls

    Variables, Constants, and Controls When it comes to conducting a scientific experiment there are three components that are very important. They are variables, constants, and controls. Let's take a look at each: Variables - These are the aspects of the experiment that change. There are two types of variables: dependent and independent.

  9. What Are Constants & Controls of a Science Project Experiment?

    The scientific method involves asking a question, doing research, forming a hypothesis and testing the hypothesis via an experiment, so that the results can be analyzed. ... Even though the controlled or constant variable in an experiment does not change, it is every bit as important to the success of a science experiment as the other variables ...

  10. Experimental Design

    The dependent variable is the factor that changes as a result of the change to the independent variable. The controlled variables (or constant variables) are factors that the scientist wants to remain constant if the experiment is to show accurate results. To be able to measure results, each of the variables must be able to be measured.

  11. Types of Variables in Research & Statistics

    Examples. Discrete variables (aka integer variables) Counts of individual items or values. Number of students in a class. Number of different tree species in a forest. Continuous variables (aka ratio variables) Measurements of continuous or non-finite values. Distance.

  12. What Is a Constant in the Scientific Method?

    A constant variable is any aspect of an experiment that a researcher intentionally keeps unchanged throughout an experiment. Experiments are always testing for measurable change, which is the dependent variable. You can also think of a dependent variable as the result obtained from an experiment.

  13. Identifying Variables

    Independent Variables. The independent variable, also known as the experimental treatment, is the difference or change in the experimental conditions that is chosen by the scientist (the cause). To ensure a fair test, a good experimental inquiry only has one independent variable and that variable should be something that can be measured ...

  14. Experimental Design

    Experimental design is a process of planning and conducting scientific experiments to investigate a hypothesis or research question. It involves carefully designing an experiment that can test the hypothesis, and controlling for other variables that may influence the results. Experimental design typically includes identifying the variables that ...

  15. Types of Variables in Science Experiments

    The two key variables in science are the independent and dependent variable, but there are other types of variables that are important. In a science experiment, a variable is any factor, attribute, or value that describes an object or situation and is subject to change. An experiment uses the scientific method to test a hypothesis and establish whether or not there is a cause and effect ...

  16. Control Groups and Treatment Groups

    In a scientific study, a control group is used to establish causality by isolating the effect of an independent variable. Here, researchers change the independent variable in the treatment group and keep it constant in the control group. Then they compare the results of these groups. Using a control group means that any change in the dependent ...

  17. Difference Between Constant and Control

    A control variable on the other hand changes, but is intentionally kept constant throughout the experiment so as to show the relationship between dependent and independent variables. Primary interest; While the constant is the variable of primary interest, the control is not; hence its influence can be controlled or eliminated.

  18. Independent and Dependent Variables Examples

    This is different from the "control variable," which is variable that is held constant so it won't influence the outcome of ... Plot or graph independent and dependent variables using the standard method. The independent variable is the x-axis, while the dependent variable is the y-axis. ... The Practice of Social Research (12th ed ...

  19. Understanding Dependent and Independent Variables in Research

    The illustration in Fig. 5.2 shows that the purpose of any typical research experimentation or hypothesis testing should be focused on determining possible effects (influence) that leads to the dependent variable (DV) which may be caused by changing or altering (conditions) the independent variables (IV). Furthermore, the authors provides in Table 5.1 some of the distinctive features of the ...

  20. Research Variables: Types, Uses and Definition of Terms

    The purpose of research is to describe and explain variance in the world, that is, variance that. occurs naturally in the world or chang e that we create due to manipulation. Variables are ...

  21. Independent vs. Dependent Variables

    The independent variable is the cause. Its value is independent of other variables in your study. The dependent variable is the effect. Its value depends on changes in the independent variable. Example: Independent and dependent variables. You design a study to test whether changes in room temperature have an effect on math test scores.

  22. What Is an Experimental Constant?

    Control constants or control variables are quantities a researcher holds steady during an experiment. Even though the value or state of a control constant may not change, it is important to record the constant so the experiment may be reproduced. Examples: temperature, day/night, duration of a test, pH. Cite this Article.

  23. What is constant variable in research method?

    A constant variable in research method is a factors or quantities that never change. Constant variables always remain the same.

  24. Research on the method of force-locking and variable stiffness for

    To solve the shortcomings of low stiffness brought by the high flexibility of continuum, but the variable stiffness method based on structure and phase change material has the problems of slow response and complex system, this paper takes the rope-driven flexible robotic arm as the research object, and proposes the design of spine-like continuum robot with force-locking variable stiffness ...