problem solving math physics

126 Users Online

Active students, messages sent, images uploaded, free learning, end of free trial.

Unlock faster, more accurate responses + 20 more PRO features.

Phy Pro Trial -

Free but limited access to Phy Pro. Need more power?  

NEW - Bookmark Phy.Chat

Need to access this page fast? Just type in Phy.Chat into google.

Snap a picture of the problem straight from your phone.

Smart Options

Phy automatically generates short follow ups. Just click it.

New - Learning Lab

Customize your learning to help Phy adapt to you even quicker.

Coming Soon - Chat Notes

View all chats with Phy, save to notes, & create study guides.

Phy Adaptive Engine®

The more you solve, the better Phy adapts to your learning style. 

Learn it. Solve it. Grade it. Explain it. With Phy.

Free Response Question? Upload a image of your working. Phy will grade it. 

Teacher didn’t explain it? Take a picture of the board and give it to Phy. 

Can’t solve a problem? Phy can. And it will show you the best approach. 

Upload Icon

Upgrade to Phy Pro.

 alt=

Phy Version 8 (3.20.24) - Systems Operational

The most advanced version of Phy. Currently 50% off, for early supporters.

Billed Monthly. Cancel Anytime.

Trial   –>  Phy Pro

  • Unlimited Messages
  • Unlimited Image Uploads
  • Unlimited Smart Actions
  • 30 --> 300 Word Input
  • 3 --> 15 MB Image Size Limit
  • 1 --> 3 Images per Message
  • 200% Memory Boost
  • 150% Better than GPT
  • 75% More Accurate, 50% Faster
  • Mobile Snaps

Prof Phy ULTRA

Access will be given out on a rolling basis. You must have an active Phy Pro subscription, for at least 90 days, to automatically join the waitlist. 

Features include:

  • Save To Notes
  • Personalize Phy
  • Smart Actions V2
  • Instant Responses
  • Phy Adaptive Engine

Share Phy.Chat

Enjoying Phy? Share the 🔗 with friends!

Welcome to Phy Panel.

Here you can customize Phy to your preferences. Currently available to only Ultra users. Pro users will get access on a rolling basis. 

Not currently eligible to use Phy Panel.

Report a bug.

What went wrong? 

You must be signed in to leave feedback

Discover the world's best Physics resources

Continue with.

By continuing you (1) agree to our Terms of Sale  and Terms of Use and (2) consent to sharing your IP and browser information used by this site’s security protocols as outlined in our Privacy Policy .

problem solving math physics

Generating PDF...

  • Pre Algebra Order of Operations Factors & Primes Fractions Long Arithmetic Decimals Exponents & Radicals Ratios & Proportions Percent Modulo Number Line Expanded Form Mean, Median & Mode
  • Algebra Equations Inequalities System of Equations System of Inequalities Basic Operations Algebraic Properties Partial Fractions Polynomials Rational Expressions Sequences Power Sums Interval Notation Pi (Product) Notation Induction Logical Sets Word Problems
  • Pre Calculus Equations Inequalities Scientific Calculator Scientific Notation Arithmetics Complex Numbers Polar/Cartesian Simultaneous Equations System of Inequalities Polynomials Rationales Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic Sections Trigonometry
  • Calculus Derivatives Derivative Applications Limits Integrals Integral Applications Integral Approximation Series ODE Multivariable Calculus Laplace Transform Taylor/Maclaurin Series Fourier Series Fourier Transform
  • Functions Line Equations Functions Arithmetic & Comp. Conic Sections Transformation
  • Linear Algebra Matrices Vectors
  • Trigonometry Identities Proving Identities Trig Equations Trig Inequalities Evaluate Functions Simplify
  • Statistics Mean Geometric Mean Quadratic Mean Average Median Mode Order Minimum Maximum Probability Mid-Range Range Standard Deviation Variance Lower Quartile Upper Quartile Interquartile Range Midhinge Standard Normal Distribution
  • Physics Mechanics
  • Chemistry Chemical Reactions Chemical Properties
  • Finance Simple Interest Compound Interest Present Value Future Value
  • Economics Point of Diminishing Return
  • Conversions Roman Numerals Radical to Exponent Exponent to Radical To Fraction To Decimal To Mixed Number To Improper Fraction Radians to Degrees Degrees to Radians Hexadecimal Scientific Notation Distance Weight Time Volume
  • Pre Algebra
  • Pre Calculus
  • Linear Algebra
  • Trigonometry
  • Conversions

Most Used Actions

Number line.

  • x^{2}-x-6=0
  • -x+3\gt 2x+1
  • line\:(1,\:2),\:(3,\:1)
  • prove\:\tan^2(x)-\sin^2(x)=\tan^2(x)\sin^2(x)
  • \frac{d}{dx}(\frac{3x+9}{2-x})
  • (\sin^2(\theta))'
  • \lim _{x\to 0}(x\ln (x))
  • \int e^x\cos (x)dx
  • \int_{0}^{\pi}\sin(x)dx
  • \sum_{n=0}^{\infty}\frac{3}{2^n}
  • Is there a step by step calculator for math?
  • Symbolab is the best step by step calculator for a wide range of math problems, from basic arithmetic to advanced calculus and linear algebra. It shows you the solution, graph, detailed steps and explanations for each problem.
  • Is there a step by step calculator for physics?
  • Symbolab is the best step by step calculator for a wide range of physics problems, including mechanics, electricity and magnetism, and thermodynamics. It shows you the steps and explanations for each problem, so you can learn as you go.
  • How to solve math problems step-by-step?
  • To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem.
  • Practice Makes Perfect Learning math takes practice, lots of practice. Just like running, it takes practice and dedication. If you want...

Please add a message.

Message received. Thanks for the feedback.

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&
  • calculators

Physics Calculator

Get detailed solutions to your math problems with our physics step-by-step calculator . practice your math skills and learn step by step with our math solver. check out all of our online calculators here .,  example,  solved problems,  difficult problems.

Here, we show you a step-by-step solved example of physics. This solution was automatically generated by our smart calculator:

What do we already know? We know the values for acceleration ($a$), velocity ($v$), distance ($y$), height ($y_0$) and want to calculate the value of velocity ($v_0$)

According to the initial data we have about the problem, the following formula would be the most useful to find the unknown ($v_0$) that we are looking for. We need to solve the equation below for $v_0$

We substitute the data of the problem in the formula and proceed to simplify the equation

Multiply $-2$ times $9.81$

Multiply $-19.62$ times $3.2$

Calculate the power $0^2$

Rearrange the equation

We need to isolate the dependent variable $v_0$, we can do that by simultaneously subtracting $-62.784$ from both sides of the equation

 Intermediate steps

Removing the variable's exponent raising both sides of the equation to the power of $\frac{1}{2}$

Divide $1$ by $2$

Simplify $\sqrt{v_0^2}$ using the power of a power property: $\left(a^m\right)^n=a^{m\cdot n}$. In the expression, $m$ equals $2$ and $n$ equals $0.5$

Multiply $2$ times $0.5$

Calculate the power $\sqrt{62.784}$

The complete answer is

 Final answer to the problem

Are you struggling with math.

Access detailed step by step solutions to thousands of problems, growing every day!

 Popular problems

Most popular problems solved with this calculator:

Learn by doing

Guided interactive problem solving that’s effective and fun. master concepts in 15 minutes a day., data analysis, computer science, programming & ai, science & engineering, join over 10 million people learning on brilliant, over 50,000 5-star reviews on ios app store and google play.

App of the day award

Master concepts in 15 minutes a day

Whether you’re a complete beginner or ready to dive into machine learning and beyond, Brilliant makes it easy to level up fast with fun, bite-sized lessons.

Effective, hands-on learning

Visual, interactive lessons make concepts feel intuitive — so even complex ideas just click. Our real-time feedback and simple explanations make learning efficient.

Learn at your level

Students and professionals alike can hone dormant skills or learn new ones. Progress through lessons and challenges tailored to your level. Designed for ages 13 to 113.

Guided bite-sized lessons

Guided bite-sized lessons

We make it easy to stay on track, see your progress, and build your problem solving skills one concept at a time.

Stay motivated

Form a real learning habit with fun content that’s always well-paced, game-like progress tracking, and friendly reminders.

Guided courses for every journey

All of our courses are crafted by award-winning teachers, researchers, and professionals from MIT, Caltech, Duke, Microsoft, Google, and more.

  • Foundational Math
  • Software Development
  • Foundational Logic
  • Data Science
  • High School Math
  • Engineering
  • Statistics and Finance

Courses in Foundational Math

  • Solving Equations
  • Measuring with Geometry
  • Mathematical Fundamentals
  • Reasoning with Algebra
  • Functions and Quadratics

iOS

10k+ Ratings

android

60k+ Ratings

We use cookies to improve your experience on Brilliant. Learn more about our cookie policy and settings .

1.7 Solving Problems in Physics

Learning objectives.

By the end of this section, you will be able to:

  • Describe the process for developing a problem-solving strategy.
  • Explain how to find the numerical solution to a problem.
  • Summarize the process for assessing the significance of the numerical solution to a problem.

Problem-solving skills are clearly essential to success in a quantitative course in physics. More important, the ability to apply broad physical principles—usually represented by equations—to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for solving problems in this text and for applying physics in everyday life.

As you are probably well aware, a certain amount of creativity and insight is required to solve problems. No rigid procedure works every time. Creativity and insight grow with experience. With practice, the basics of problem solving become almost automatic. One way to get practice is to work out the text’s examples for yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest to build confidence and then progressing to the more difficult. After you become involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom, just as is done in many of the applications in this text.

Although there is no simple step-by-step method that works for every problem, the following three-stage process facilitates problem solving and makes it more meaningful. The three stages are strategy, solution, and significance. This process is used in examples throughout the book. Here, we look at each stage of the process in turn.

Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and then develop a strategy for solving it. Some general advice for this stage is as follows:

  • Examine the situation to determine which physical principles are involved . It often helps to draw a simple sketch at the outset. You often need to decide which direction is positive and note that on your sketch. When you have identified the physical principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.
  • Make a list of what is given or can be inferred from the problem as stated (identify the “knowns”) . Many problems are stated very succinctly and require some inspection to determine what is known. Drawing a sketch can be very useful at this point as well. Formally identifying the knowns is of particular importance in applying physics to real-world situations. For example, the word stopped means the velocity is zero at that instant. Also, we can often take initial time and position as zero by the appropriate choice of coordinate system.
  • Identify exactly what needs to be determined in the problem (identify the unknowns) . In complex problems, especially, it is not always obvious what needs to be found or in what sequence. Making a list can help identify the unknowns.
  • Determine which physical principles can help you solve the problem . Since physical principles tend to be expressed in the form of mathematical equations, a list of knowns and unknowns can help here. It is easiest if you can find equations that contain only one unknown—that is, all the other variables are known—so you can solve for the unknown easily. If the equation contains more than one unknown, then additional equations are needed to solve the problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

The solution stage is when you do the math. Substitute the knowns (along with their units) into the appropriate equation and obtain numerical solutions complete with units . That is, do the algebra, calculus, geometry, or arithmetic necessary to find the unknown from the knowns, being sure to carry the units through the calculations. This step is clearly important because it produces the numerical answer, along with its units. Notice, however, that this stage is only one-third of the overall problem-solving process.

Significance

After having done the math in the solution stage of problem solving, it is tempting to think you are done. But, always remember that physics is not math. Rather, in doing physics, we use mathematics as a tool to help us understand nature. So, after you obtain a numerical answer, you should always assess its significance:

  • Check your units. If the units of the answer are incorrect, then an error has been made and you should go back over your previous steps to find it. One way to find the mistake is to check all the equations you derived for dimensional consistency. However, be warned that correct units do not guarantee the numerical part of the answer is also correct.
  • Check the answer to see whether it is reasonable. Does it make sense? This step is extremely important: –the goal of physics is to describe nature accurately. To determine whether the answer is reasonable, check both its magnitude and its sign, in addition to its units. The magnitude should be consistent with a rough estimate of what it should be. It should also compare reasonably with magnitudes of other quantities of the same type. The sign usually tells you about direction and should be consistent with your prior expectations. Your judgment will improve as you solve more physics problems, and it will become possible for you to make finer judgments regarding whether nature is described adequately by the answer to a problem. This step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than just being able to solve a problem mechanically.
  • Check to see whether the answer tells you something interesting. What does it mean? This is the flip side of the question: Does it make sense? Ultimately, physics is about understanding nature, and we solve physics problems to learn a little something about how nature operates. Therefore, assuming the answer does make sense, you should always take a moment to see if it tells you something about the world that you find interesting. Even if the answer to this particular problem is not very interesting to you, what about the method you used to solve it? Could the method be adapted to answer a question that you do find interesting? In many ways, it is in answering questions such as these that science progresses.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • Authors: William Moebs, Samuel J. Ling, Jeff Sanny
  • Publisher/website: OpenStax
  • Book title: University Physics Volume 1
  • Publication date: Sep 19, 2016
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • Section URL: https://openstax.org/books/university-physics-volume-1/pages/1-7-solving-problems-in-physics

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Problem Solving

Linear algebra can be used to solve large ohmic circuits. This page explains how to define the circuit problem in terms of a linear system that can be solved with computational methods like matlab or python.

  • 1.1 Incidence Matrix
  • 1.2 Loop Rule (Kirchhoff's voltage law)
  • 1.3 Kirchhoff's Current Law
  • 1.4 Solving Problems
  • 3.1 Further reading
  • 3.2 External links
  • 4 References

The Main Idea

We can describe an electrical circuit as a graph where the nodes represent specific points and the edges represent the components connecting them. E.g:

problem solving math physics

Incidence Matrix

The incidence matrix, A, is a matrix of dimensions m x n, where m is the number of edges and n is the number of nodes. If x is the vector that contains all the nodes in order, A satisfies: [math]\displaystyle{ A\vec{x}_{edge} = x_{end} - x_{start} }[/math] Thus, the resulting matrix will have zeros in every element of each row, except for the start and the end nodes, which will be -1 and 1 respectively:

problem solving math physics

Here, [math]\displaystyle{ x_{1}, x_{2}, x_{3} }[/math] and [math]\displaystyle{ x_{4} }[/math] represent the voltages at the nodes. Then [math]\displaystyle{ A\vec{x}_{edge} = x_{end} - x_{start} }[/math] gives the voltage differences [math]\displaystyle{ ∆V }[/math] .

Loop Rule (Kirchhoff's voltage law)

Using this creative way of transforming a circuit to a graph and getting the incidence matrix from it allows us to do some interesting things. Kirchhoff's loop rule is a principle of conservation of energy that implies that the directed sum of the voltage differences around any closed network is zero.

This means that the components of [math]\displaystyle{ A\vec{x} = b }[/math] add to zero around every loop. Moreover, the voltage law can decide whether b is in the column space of A.

We know from Ohm's law that [math]\displaystyle{ V = I * R }[/math] . Then, in the previous graph for example, we would have that [math]\displaystyle{ V_{edge1} = I * R = (direction) * R_{1} = 1 * R_{1} }[/math] .

Kirchhoff's Current Law

problem solving math physics

We know from Kirchhoff's law that the sum of the currents in each node is zero. This means that the current flowing into the node is the same as the current flowing out of the node. Therefore the multiplication of each column of A by the current vector, y, must be equal to zero:

[math]\displaystyle{ A^{T}\vec{y} = 0 }[/math]

where [math]\displaystyle{ y_{i} }[/math] is the current passing through edge [math]\displaystyle{ i }[/math] .

If a circuit has a source like a battery, we can treat the entire circuit as a node. The current in and out of every node within the circuit will be zero except for the nodes connected to the positive and negative ends of the battery. For the positive end the net current, [math]\displaystyle{ S }[/math] , will be positive and for the negative end the net current will be negative. Thus we get:

[math]\displaystyle{ A^{T}\vec{y} = f }[/math]

where [math]\displaystyle{ f_{i} = 0 }[/math] if [math]\displaystyle{ i }[/math] is not one of the nodes connected to the battery, [math]\displaystyle{ f_{i} = S }[/math] if [math]\displaystyle{ i }[/math] is connected to the positive end and [math]\displaystyle{ f_{i} = -S }[/math] if [math]\displaystyle{ i }[/math] is connected to the negative end.

Solving Problems

From Ohm's law we have [math]\displaystyle{ V = I * R }[/math] . Thus if we define the conductance diagonal matrix [math]\displaystyle{ C }[/math] where [math]\displaystyle{ C_{i,i} = \frac{1}{R_{i}} }[/math] , [math]\displaystyle{ C_{i,j} = 0 }[/math] , Ohm's law becomes:

[math]\displaystyle{ \vec{y} = -CA\vec{x} }[/math]

where [math]\displaystyle{ y_{i} }[/math] is the current through edge [math]\displaystyle{ i }[/math] and [math]\displaystyle{ x_{j} }[/math] is the voltage at node [math]\displaystyle{ j }[/math] . Substituting for y in Kirchhoff's law, we get:

[math]\displaystyle{ -A^{T}CA\vec{x} = f }[/math]

We can now use this system of matrices to solve circuit problems.

It is important to note that for the exercises posted above, the solutions for those problems should be easy to compute given the number of nodes and connections. Nevertheless, bigger and more complex problems would benefit massively from the methods of linear algebra, as they could be computed in this standard way.

Suppose we have the following circuit (along with its graph and matrix representation):

problem solving math physics

Solving the system, we get:

problem solving math physics

Notice that [math]\displaystyle{ C }[/math] is the identity, thus:

problem solving math physics

Solving for x, we get the voltages:

problem solving math physics

Finally, we can find the currents using [math]\displaystyle{ \vec{y} = -CA\vec{x} }[/math] :

problem solving math physics

Further reading

  • Linear Algebra applications in image compression: https://math.mit.edu/~gs/linearalgebra/linearalgebra5_7-1.pdf

External links

Gilbert Strang's "Equilibrium Equations and Minimum Principles": http://cns-web.bu.edu/~eric/EC500/attachments/ON(2d)LINE(20)READINGS/strang.pdf

  • Strang, G. (2016), Introduction to Linear Algebra , Wellesley-Cambridge Press, 5th edition, isbn:978-0-9802327-7-6
  • Which Category did you place this in?

Navigation menu

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications

How to Solve Any Physics Problem

Last Updated: July 21, 2023 Fact Checked

This article was co-authored by Sean Alexander, MS . Sean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 328,864 times.

Baffled as to where to begin with a physics problem? There is a very simply and logical flow process to solving any physics problem.

Step 1 Calm down.

  • Ask yourself if your answers make sense. If the numbers look absurd (for example, you get that a rock dropped off a 50-meter cliff moves with the speed of only 0.00965 meters per second when it hits the ground), you made a mistake somewhere.
  • Don't forget to include the units into your answers, and always keep track of them. So, if you are solving for velocity and get your answer in seconds, that is a sign that something went wrong, because it should be in meters per second.
  • Plug your answers back into the original equations to make sure you get the same number on both sides.

Step 10 Put a box, circle, or underline your answer to make your work neat.

Community Q&A

Community Answer

  • Many people report that if they leave a problem for a while and come back to it later, they find they have a new perspective on it and can sometimes see an easy way to the answer that they did not notice before. Thanks Helpful 249 Not Helpful 48
  • Try to understand the problem first. Thanks Helpful 186 Not Helpful 51
  • Remember, the physics part of the problem is figuring out what you are solving for, drawing the diagram, and remembering the formulae. The rest is just use of algebra, trigonometry, and/or calculus, depending on the difficulty of your course. Thanks Helpful 115 Not Helpful 34

problem solving math physics

  • Physics is not easy to grasp for many people, so do not get bent out of shape over a problem. Thanks Helpful 100 Not Helpful 25
  • If an instructor tells you to draw a free body diagram, be sure that that is exactly what you draw. Thanks Helpful 89 Not Helpful 24

Things You'll Need

  • A Writing Utensil (preferably a pencil or erasable pen of sorts)
  • Calculator with all the functions you need for your exam
  • An understanding of the equations needed to solve the problems. Or a list of them will suffice if you are just trying to get through the course alive.

You Might Also Like

Convert Kelvin to Fahrenheit or Celsius

Expert Interview

problem solving math physics

Thanks for reading our article! If you’d like to learn more about teaching, check out our in-depth interview with Sean Alexander, MS .

  • ↑ https://iopscience.iop.org/article/10.1088/1361-6404/aa9038
  • ↑ https://physics.wvu.edu/files/d/ce78505d-1426-4d68-8bb2-128d8aac6b1b/expertapproachtosolvingphysicsproblems.pdf
  • ↑ https://www.brighthubeducation.com/science-homework-help/42596-tips-to-choosing-the-correct-physics-formula/

About This Article

Sean Alexander, MS

  • Send fan mail to authors

Reader Success Stories

Aayush P.

Dec 6, 2023

Did this article help you?

Aayush P.

Monish Shetty

Sep 30, 2016

U. Pathum

Oct 9, 2017

Komal Verma

Komal Verma

Dec 6, 2017

Lowella Tabbert

Lowella Tabbert

Jun 7, 2022

Am I a Narcissist or an Empath Quiz

Featured Articles

Right Brain vs Left Brain Test

Trending Articles

What Does “If They Wanted to, They Would” Mean and Is It True?

Watch Articles

Clean Silver Jewelry with Vinegar

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

Youtube

  • TPC and eLearning
  • What's NEW at TPC?
  • Read Watch Interact
  • Practice Review Test
  • Teacher-Tools
  • Subscription Selection
  • Seat Calculator
  • Ad Free Account
  • Edit Profile Settings
  • Classes (Version 2)
  • Student Progress Edit
  • Task Properties
  • Export Student Progress
  • Task, Activities, and Scores
  • Metric Conversions Questions
  • Metric System Questions
  • Metric Estimation Questions
  • Significant Digits Questions
  • Proportional Reasoning
  • Acceleration
  • Distance-Displacement
  • Dots and Graphs
  • Graph That Motion
  • Match That Graph
  • Name That Motion
  • Motion Diagrams
  • Pos'n Time Graphs Numerical
  • Pos'n Time Graphs Conceptual
  • Up And Down - Questions
  • Balanced vs. Unbalanced Forces
  • Change of State
  • Force and Motion
  • Mass and Weight
  • Match That Free-Body Diagram
  • Net Force (and Acceleration) Ranking Tasks
  • Newton's Second Law
  • Normal Force Card Sort
  • Recognizing Forces
  • Air Resistance and Skydiving
  • Solve It! with Newton's Second Law
  • Which One Doesn't Belong?
  • Component Addition Questions
  • Head-to-Tail Vector Addition
  • Projectile Mathematics
  • Trajectory - Angle Launched Projectiles
  • Trajectory - Horizontally Launched Projectiles
  • Vector Addition
  • Vector Direction
  • Which One Doesn't Belong? Projectile Motion
  • Forces in 2-Dimensions
  • Being Impulsive About Momentum
  • Explosions - Law Breakers
  • Hit and Stick Collisions - Law Breakers
  • Case Studies: Impulse and Force
  • Impulse-Momentum Change Table
  • Keeping Track of Momentum - Hit and Stick
  • Keeping Track of Momentum - Hit and Bounce
  • What's Up (and Down) with KE and PE?
  • Energy Conservation Questions
  • Energy Dissipation Questions
  • Energy Ranking Tasks
  • LOL Charts (a.k.a., Energy Bar Charts)
  • Match That Bar Chart
  • Words and Charts Questions
  • Name That Energy
  • Stepping Up with PE and KE Questions
  • Case Studies - Circular Motion
  • Circular Logic
  • Forces and Free-Body Diagrams in Circular Motion
  • Gravitational Field Strength
  • Universal Gravitation
  • Angular Position and Displacement
  • Linear and Angular Velocity
  • Angular Acceleration
  • Rotational Inertia
  • Balanced vs. Unbalanced Torques
  • Getting a Handle on Torque
  • Torque-ing About Rotation
  • Properties of Matter
  • Fluid Pressure
  • Buoyant Force
  • Sinking, Floating, and Hanging
  • Pascal's Principle
  • Flow Velocity
  • Bernoulli's Principle
  • Balloon Interactions
  • Charge and Charging
  • Charge Interactions
  • Charging by Induction
  • Conductors and Insulators
  • Coulombs Law
  • Electric Field
  • Electric Field Intensity
  • Polarization
  • Case Studies: Electric Power
  • Know Your Potential
  • Light Bulb Anatomy
  • I = ∆V/R Equations as a Guide to Thinking
  • Parallel Circuits - ∆V = I•R Calculations
  • Resistance Ranking Tasks
  • Series Circuits - ∆V = I•R Calculations
  • Series vs. Parallel Circuits
  • Equivalent Resistance
  • Period and Frequency of a Pendulum
  • Pendulum Motion: Velocity and Force
  • Energy of a Pendulum
  • Period and Frequency of a Mass on a Spring
  • Horizontal Springs: Velocity and Force
  • Vertical Springs: Velocity and Force
  • Energy of a Mass on a Spring
  • Decibel Scale
  • Frequency and Period
  • Closed-End Air Columns
  • Name That Harmonic: Strings
  • Rocking the Boat
  • Wave Basics
  • Matching Pairs: Wave Characteristics
  • Wave Interference
  • Waves - Case Studies
  • Color Addition and Subtraction
  • Color Filters
  • If This, Then That: Color Subtraction
  • Light Intensity
  • Color Pigments
  • Converging Lenses
  • Curved Mirror Images
  • Law of Reflection
  • Refraction and Lenses
  • Total Internal Reflection
  • Who Can See Who?
  • Formulas and Atom Counting
  • Atomic Models
  • Bond Polarity
  • Entropy Questions
  • Cell Voltage Questions
  • Heat of Formation Questions
  • Reduction Potential Questions
  • Oxidation States Questions
  • Measuring the Quantity of Heat
  • Hess's Law
  • Oxidation-Reduction Questions
  • Galvanic Cells Questions
  • Thermal Stoichiometry
  • Molecular Polarity
  • Quantum Mechanics
  • Balancing Chemical Equations
  • Bronsted-Lowry Model of Acids and Bases
  • Classification of Matter
  • Collision Model of Reaction Rates
  • Density Ranking Tasks
  • Dissociation Reactions
  • Complete Electron Configurations
  • Elemental Measures
  • Enthalpy Change Questions
  • Equilibrium Concept
  • Equilibrium Constant Expression
  • Equilibrium Calculations - Questions
  • Equilibrium ICE Table
  • Intermolecular Forces Questions
  • Ionic Bonding
  • Lewis Electron Dot Structures
  • Limiting Reactants
  • Line Spectra Questions
  • Mass Stoichiometry
  • Measurement and Numbers
  • Metals, Nonmetals, and Metalloids
  • Metric Estimations
  • Metric System
  • Molarity Ranking Tasks
  • Mole Conversions
  • Name That Element
  • Names to Formulas
  • Names to Formulas 2
  • Nuclear Decay
  • Particles, Words, and Formulas
  • Periodic Trends
  • Precipitation Reactions and Net Ionic Equations
  • Pressure Concepts
  • Pressure-Temperature Gas Law
  • Pressure-Volume Gas Law
  • Chemical Reaction Types
  • Significant Digits and Measurement
  • States Of Matter Exercise
  • Stoichiometry Law Breakers
  • Stoichiometry - Math Relationships
  • Subatomic Particles
  • Spontaneity and Driving Forces
  • Gibbs Free Energy
  • Volume-Temperature Gas Law
  • Acid-Base Properties
  • Energy and Chemical Reactions
  • Chemical and Physical Properties
  • Valence Shell Electron Pair Repulsion Theory
  • Writing Balanced Chemical Equations
  • Mission CG1
  • Mission CG10
  • Mission CG2
  • Mission CG3
  • Mission CG4
  • Mission CG5
  • Mission CG6
  • Mission CG7
  • Mission CG8
  • Mission CG9
  • Mission EC1
  • Mission EC10
  • Mission EC11
  • Mission EC12
  • Mission EC2
  • Mission EC3
  • Mission EC4
  • Mission EC5
  • Mission EC6
  • Mission EC7
  • Mission EC8
  • Mission EC9
  • Mission RL1
  • Mission RL2
  • Mission RL3
  • Mission RL4
  • Mission RL5
  • Mission RL6
  • Mission KG7
  • Mission RL8
  • Mission KG9
  • Mission RL10
  • Mission RL11
  • Mission RM1
  • Mission RM2
  • Mission RM3
  • Mission RM4
  • Mission RM5
  • Mission RM6
  • Mission RM8
  • Mission RM10
  • Mission LC1
  • Mission RM11
  • Mission LC2
  • Mission LC3
  • Mission LC4
  • Mission LC5
  • Mission LC6
  • Mission LC8
  • Mission SM1
  • Mission SM2
  • Mission SM3
  • Mission SM4
  • Mission SM5
  • Mission SM6
  • Mission SM8
  • Mission SM10
  • Mission KG10
  • Mission SM11
  • Mission KG2
  • Mission KG3
  • Mission KG4
  • Mission KG5
  • Mission KG6
  • Mission KG8
  • Mission KG11
  • Mission F2D1
  • Mission F2D2
  • Mission F2D3
  • Mission F2D4
  • Mission F2D5
  • Mission F2D6
  • Mission KC1
  • Mission KC2
  • Mission KC3
  • Mission KC4
  • Mission KC5
  • Mission KC6
  • Mission KC7
  • Mission KC8
  • Mission AAA
  • Mission SM9
  • Mission LC7
  • Mission LC9
  • Mission NL1
  • Mission NL2
  • Mission NL3
  • Mission NL4
  • Mission NL5
  • Mission NL6
  • Mission NL7
  • Mission NL8
  • Mission NL9
  • Mission NL10
  • Mission NL11
  • Mission NL12
  • Mission MC1
  • Mission MC10
  • Mission MC2
  • Mission MC3
  • Mission MC4
  • Mission MC5
  • Mission MC6
  • Mission MC7
  • Mission MC8
  • Mission MC9
  • Mission RM7
  • Mission RM9
  • Mission RL7
  • Mission RL9
  • Mission SM7
  • Mission SE1
  • Mission SE10
  • Mission SE11
  • Mission SE12
  • Mission SE2
  • Mission SE3
  • Mission SE4
  • Mission SE5
  • Mission SE6
  • Mission SE7
  • Mission SE8
  • Mission SE9
  • Mission VP1
  • Mission VP10
  • Mission VP2
  • Mission VP3
  • Mission VP4
  • Mission VP5
  • Mission VP6
  • Mission VP7
  • Mission VP8
  • Mission VP9
  • Mission WM1
  • Mission WM2
  • Mission WM3
  • Mission WM4
  • Mission WM5
  • Mission WM6
  • Mission WM7
  • Mission WM8
  • Mission WE1
  • Mission WE10
  • Mission WE2
  • Mission WE3
  • Mission WE4
  • Mission WE5
  • Mission WE6
  • Mission WE7
  • Mission WE8
  • Mission WE9
  • Vector Walk Interactive
  • Name That Motion Interactive
  • Kinematic Graphing 1 Concept Checker
  • Kinematic Graphing 2 Concept Checker
  • Graph That Motion Interactive
  • Two Stage Rocket Interactive
  • Rocket Sled Concept Checker
  • Force Concept Checker
  • Free-Body Diagrams Concept Checker
  • Free-Body Diagrams The Sequel Concept Checker
  • Skydiving Concept Checker
  • Elevator Ride Concept Checker
  • Vector Addition Concept Checker
  • Vector Walk in Two Dimensions Interactive
  • Name That Vector Interactive
  • River Boat Simulator Concept Checker
  • Projectile Simulator 2 Concept Checker
  • Projectile Simulator 3 Concept Checker
  • Hit the Target Interactive
  • Turd the Target 1 Interactive
  • Turd the Target 2 Interactive
  • Balance It Interactive
  • Go For The Gold Interactive
  • Egg Drop Concept Checker
  • Fish Catch Concept Checker
  • Exploding Carts Concept Checker
  • Collision Carts - Inelastic Collisions Concept Checker
  • Its All Uphill Concept Checker
  • Stopping Distance Concept Checker
  • Chart That Motion Interactive
  • Roller Coaster Model Concept Checker
  • Uniform Circular Motion Concept Checker
  • Horizontal Circle Simulation Concept Checker
  • Vertical Circle Simulation Concept Checker
  • Race Track Concept Checker
  • Gravitational Fields Concept Checker
  • Orbital Motion Concept Checker
  • Angular Acceleration Concept Checker
  • Balance Beam Concept Checker
  • Torque Balancer Concept Checker
  • Aluminum Can Polarization Concept Checker
  • Charging Concept Checker
  • Name That Charge Simulation
  • Coulomb's Law Concept Checker
  • Electric Field Lines Concept Checker
  • Put the Charge in the Goal Concept Checker
  • Circuit Builder Concept Checker (Series Circuits)
  • Circuit Builder Concept Checker (Parallel Circuits)
  • Circuit Builder Concept Checker (∆V-I-R)
  • Circuit Builder Concept Checker (Voltage Drop)
  • Equivalent Resistance Interactive
  • Pendulum Motion Simulation Concept Checker
  • Mass on a Spring Simulation Concept Checker
  • Particle Wave Simulation Concept Checker
  • Boundary Behavior Simulation Concept Checker
  • Slinky Wave Simulator Concept Checker
  • Simple Wave Simulator Concept Checker
  • Wave Addition Simulation Concept Checker
  • Standing Wave Maker Simulation Concept Checker
  • Color Addition Concept Checker
  • Painting With CMY Concept Checker
  • Stage Lighting Concept Checker
  • Filtering Away Concept Checker
  • InterferencePatterns Concept Checker
  • Young's Experiment Interactive
  • Plane Mirror Images Interactive
  • Who Can See Who Concept Checker
  • Optics Bench (Mirrors) Concept Checker
  • Name That Image (Mirrors) Interactive
  • Refraction Concept Checker
  • Total Internal Reflection Concept Checker
  • Optics Bench (Lenses) Concept Checker
  • Kinematics Preview
  • Velocity Time Graphs Preview
  • Moving Cart on an Inclined Plane Preview
  • Stopping Distance Preview
  • Cart, Bricks, and Bands Preview
  • Fan Cart Study Preview
  • Friction Preview
  • Coffee Filter Lab Preview
  • Friction, Speed, and Stopping Distance Preview
  • Up and Down Preview
  • Projectile Range Preview
  • Ballistics Preview
  • Juggling Preview
  • Marshmallow Launcher Preview
  • Air Bag Safety Preview
  • Colliding Carts Preview
  • Collisions Preview
  • Engineering Safer Helmets Preview
  • Push the Plow Preview
  • Its All Uphill Preview
  • Energy on an Incline Preview
  • Modeling Roller Coasters Preview
  • Hot Wheels Stopping Distance Preview
  • Ball Bat Collision Preview
  • Energy in Fields Preview
  • Weightlessness Training Preview
  • Roller Coaster Loops Preview
  • Universal Gravitation Preview
  • Keplers Laws Preview
  • Kepler's Third Law Preview
  • Charge Interactions Preview
  • Sticky Tape Experiments Preview
  • Wire Gauge Preview
  • Voltage, Current, and Resistance Preview
  • Light Bulb Resistance Preview
  • Series and Parallel Circuits Preview
  • Thermal Equilibrium Preview
  • Linear Expansion Preview
  • Heating Curves Preview
  • Electricity and Magnetism - Part 1 Preview
  • Electricity and Magnetism - Part 2 Preview
  • Vibrating Mass on a Spring Preview
  • Period of a Pendulum Preview
  • Wave Speed Preview
  • Slinky-Experiments Preview
  • Standing Waves in a Rope Preview
  • Sound as a Pressure Wave Preview
  • DeciBel Scale Preview
  • DeciBels, Phons, and Sones Preview
  • Sound of Music Preview
  • Shedding Light on Light Bulbs Preview
  • Models of Light Preview
  • Electromagnetic Radiation Preview
  • Electromagnetic Spectrum Preview
  • EM Wave Communication Preview
  • Digitized Data Preview
  • Light Intensity Preview
  • Concave Mirrors Preview
  • Object Image Relations Preview
  • Snells Law Preview
  • Reflection vs. Transmission Preview
  • Magnification Lab Preview
  • Reactivity Preview
  • Ions and the Periodic Table Preview
  • Periodic Trends Preview
  • Intermolecular Forces Preview
  • Melting Points and Boiling Points Preview
  • Bond Energy and Reactions Preview
  • Reaction Rates Preview
  • Ammonia Factory Preview
  • Stoichiometry Preview
  • Nuclear Chemistry Preview
  • Gaining Teacher Access
  • Tasks and Classes
  • Tasks - Classic
  • Subscription
  • Subscription Locator
  • 1-D Kinematics
  • Newton's Laws
  • Vectors - Motion and Forces in Two Dimensions
  • Momentum and Its Conservation
  • Work and Energy
  • Circular Motion and Satellite Motion
  • Thermal Physics
  • Static Electricity
  • Electric Circuits
  • Vibrations and Waves
  • Sound Waves and Music
  • Light and Color
  • Reflection and Mirrors
  • About the Physics Interactives
  • Task Tracker
  • Usage Policy
  • Newtons Laws
  • Vectors and Projectiles
  • Forces in 2D
  • Momentum and Collisions
  • Circular and Satellite Motion
  • Balance and Rotation
  • Electromagnetism
  • Waves and Sound
  • Atomic Physics
  • Forces in Two Dimensions
  • Work, Energy, and Power
  • Circular Motion and Gravitation
  • Sound Waves
  • 1-Dimensional Kinematics
  • Circular, Satellite, and Rotational Motion
  • Einstein's Theory of Special Relativity

Waves, Sound and Light

  • QuickTime Movies
  • About the Concept Builders
  • Pricing For Schools
  • Directions for Version 2
  • Measurement and Units
  • Relationships and Graphs
  • Rotation and Balance
  • Vibrational Motion
  • Reflection and Refraction
  • Teacher Accounts
  • Task Tracker Directions
  • Kinematic Concepts
  • Kinematic Graphing
  • Wave Motion
  • Sound and Music
  • About CalcPad
  • 1D Kinematics
  • Vectors and Forces in 2D
  • Simple Harmonic Motion
  • Rotational Kinematics
  • Rotation and Torque
  • Rotational Dynamics
  • Electric Fields, Potential, and Capacitance
  • Transient RC Circuits
  • Light Waves
  • Units and Measurement
  • Stoichiometry
  • Molarity and Solutions
  • Thermal Chemistry
  • Acids and Bases
  • Kinetics and Equilibrium
  • Solution Equilibria
  • Oxidation-Reduction
  • Nuclear Chemistry
  • Newton's Laws of Motion
  • Work and Energy Packet
  • Static Electricity Review
  • NGSS Alignments
  • 1D-Kinematics
  • Projectiles
  • Circular Motion
  • Magnetism and Electromagnetism
  • Graphing Practice
  • About the ACT
  • ACT Preparation
  • For Teachers
  • Other Resources
  • Solutions Guide
  • Solutions Guide Digital Download
  • Motion in One Dimension
  • Work, Energy and Power
  • Algebra Based Physics
  • Other Tools
  • Frequently Asked Questions
  • Purchasing the Download
  • Purchasing the CD
  • Purchasing the Digital Download
  • About the NGSS Corner
  • NGSS Search
  • Force and Motion DCIs - High School
  • Energy DCIs - High School
  • Wave Applications DCIs - High School
  • Force and Motion PEs - High School
  • Energy PEs - High School
  • Wave Applications PEs - High School
  • Crosscutting Concepts
  • The Practices
  • Physics Topics
  • NGSS Corner: Activity List
  • NGSS Corner: Infographics
  • About the Toolkits
  • Position-Velocity-Acceleration
  • Position-Time Graphs
  • Velocity-Time Graphs
  • Newton's First Law
  • Newton's Second Law
  • Newton's Third Law
  • Terminal Velocity
  • Projectile Motion
  • Forces in 2 Dimensions
  • Impulse and Momentum Change
  • Momentum Conservation
  • Work-Energy Fundamentals
  • Work-Energy Relationship
  • Roller Coaster Physics
  • Satellite Motion
  • Electric Fields
  • Circuit Concepts
  • Series Circuits
  • Parallel Circuits
  • Describing-Waves
  • Wave Behavior Toolkit
  • Standing Wave Patterns
  • Resonating Air Columns
  • Wave Model of Light
  • Plane Mirrors
  • Curved Mirrors
  • Teacher Guide
  • Using Lab Notebooks
  • Current Electricity
  • Light Waves and Color
  • Reflection and Ray Model of Light
  • Refraction and Ray Model of Light
  • Classes (Legacy Version)
  • Teacher Resources
  • Subscriptions

problem solving math physics

  • Newton's Laws
  • Einstein's Theory of Special Relativity
  • About Concept Checkers
  • School Pricing
  • Newton's Laws of Motion
  • Newton's First Law
  • Newton's Third Law

Calculator Pad, Version 2

The calculator pad.

Use the links to the various Subjects included in The Calculator Pad to access the Physics (and Chemistry) Problem Sets. The Free versions of each Problem Set are linked to from each Subject page. Task Tracker users should access their teacher-assigned Problem Sets from the Assignment Board on their Class page . 

About The Calculator Pad  || Teacher Accounts  Pricing for Schools || Task Tracker Directions

Electricity

Other calculator pad resources:.

Problem Daily

Your daily exercise for dominating physics, math, and more.

Problem Of the Day

How To Use This Site

Training your problem solving muscles is like any other type of exercise. It takes practice!

Try out the practice problem below, based on calculating the average speed.

As we build up problems in different topics and curricula, they will be available under the Courses menu above.

Loading... The key components are: 1. The noun (subject) : Henry 2. The distance travelled: 863.12 meters 3. The time travelled: 257.45 seconds Calculating the average speed is computed using the following equation that defines average speed: $$\langle v\rangle = \frac{\Delta d}{\Delta t}$$ $$\langle v\rangle = \frac{863.12 \text{ meters}}{ 257.45 \text{ seconds}} = 3.35 \frac{\text{meters}}{\text{second}}$$ -->

Word problems from physics and other subjects are carefully constructed and auto-generated., click below to reveal the answer, and a systematic approach to solving it, +now reload the web page to generate a new problem to practice.

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Scientists use generative AI to answer complex questions in physics

Press contact :, media download.

A cute robot is at the chalkboard. The chalkboard is filled with complex charts, waves and shapes.

*Terms of Use:

Images for download on the MIT News office website are made available to non-commercial entities, press and the general public under a Creative Commons Attribution Non-Commercial No Derivatives license . You may not alter the images provided, other than to crop them to size. A credit line must be used when reproducing images; if one is not provided below, credit the images to "MIT."

A cute robot is at the chalkboard. The chalkboard is filled with complex charts, waves and shapes.

Previous image Next image

When water freezes, it transitions from a liquid phase to a solid phase, resulting in a drastic change in properties like density and volume. Phase transitions in water are so common most of us probably don’t even think about them, but phase transitions in novel materials or complex physical systems are an important area of study.

To fully understand these systems, scientists must be able to recognize phases and detect the transitions between. But how to quantify phase changes in an unknown system is often unclear, especially when data are scarce.

Researchers from MIT and the University of Basel in Switzerland applied generative artificial intelligence models to this problem, developing a new machine-learning framework that can automatically map out phase diagrams for novel physical systems.

Their physics-informed machine-learning approach is more efficient than laborious, manual techniques which rely on theoretical expertise. Importantly, because their approach leverages generative models, it does not require huge, labeled training datasets used in other machine-learning techniques.

Such a framework could help scientists investigate the thermodynamic properties of novel materials or detect entanglement in quantum systems, for instance. Ultimately, this technique could make it possible for scientists to discover unknown phases of matter autonomously.

“If you have a new system with fully unknown properties, how would you choose which observable quantity to study? The hope, at least with data-driven tools, is that you could scan large new systems in an automated way, and it will point you to important changes in the system. This might be a tool in the pipeline of automated scientific discovery of new, exotic properties of phases,” says Frank Schäfer, a postdoc in the Julia Lab in the Computer Science and Artificial Intelligence Laboratory (CSAIL) and co-author of a paper on this approach.

Joining Schäfer on the paper are first author Julian Arnold, a graduate student at the University of Basel; Alan Edelman, applied mathematics professor in the Department of Mathematics and leader of the Julia Lab; and senior author Christoph Bruder, professor in the Department of Physics at the University of Basel. The research is published today in Physical Review Letters.

Detecting phase transitions using AI

While water transitioning to ice might be among the most obvious examples of a phase change, more exotic phase changes, like when a material transitions from being a normal conductor to a superconductor, are of keen interest to scientists.

These transitions can be detected by identifying an “order parameter,” a quantity that is important and expected to change. For instance, water freezes and transitions to a solid phase (ice) when its temperature drops below 0 degrees Celsius. In this case, an appropriate order parameter could be defined in terms of the proportion of water molecules that are part of the crystalline lattice versus those that remain in a disordered state.

In the past, researchers have relied on physics expertise to build phase diagrams manually, drawing on theoretical understanding to know which order parameters are important. Not only is this tedious for complex systems, and perhaps impossible for unknown systems with new behaviors, but it also introduces human bias into the solution.

More recently, researchers have begun using machine learning to build discriminative classifiers that can solve this task by learning to classify a measurement statistic as coming from a particular phase of the physical system, the same way such models classify an image as a cat or dog.

The MIT researchers demonstrated how generative models can be used to solve this classification task much more efficiently, and in a physics-informed manner.

The Julia Programming Language , a popular language for scientific computing that is also used in MIT’s introductory linear algebra classes, offers many tools that make it invaluable for constructing such generative models, Schäfer adds.

Generative models, like those that underlie ChatGPT and Dall-E, typically work by estimating the probability distribution of some data, which they use to generate new data points that fit the distribution (such as new cat images that are similar to existing cat images).

However, when simulations of a physical system using tried-and-true scientific techniques are available, researchers get a model of its probability distribution for free. This distribution describes the measurement statistics of the physical system.

A more knowledgeable model

The MIT team’s insight is that this probability distribution also defines a generative model upon which a classifier can be constructed. They plug the generative model into standard statistical formulas to directly construct a classifier instead of learning it from samples, as was done with discriminative approaches.

“This is a really nice way of incorporating something you know about your physical system deep inside your machine-learning scheme. It goes far beyond just performing feature engineering on your data samples or simple inductive biases,” Schäfer says.

This generative classifier can determine what phase the system is in given some parameter, like temperature or pressure. And because the researchers directly approximate the probability distributions underlying measurements from the physical system, the classifier has system knowledge.

This enables their method to perform better than other machine-learning techniques. And because it can work automatically without the need for extensive training, their approach significantly enhances the computational efficiency of identifying phase transitions.

At the end of the day, similar to how one might ask ChatGPT to solve a math problem, the researchers can ask the generative classifier questions like “does this sample belong to phase I or phase II?” or “was this sample generated at high temperature or low temperature?”

Scientists could also use this approach to solve different binary classification tasks in physical systems, possibly to detect entanglement in quantum systems (Is the state entangled or not?) or determine whether theory A or B is best suited to solve a particular problem. They could also use this approach to better understand and improve large language models like ChatGPT by identifying how certain parameters should be tuned so the chatbot gives the best outputs.

In the future, the researchers also want to study theoretical guarantees regarding how many measurements they would need to effectively detect phase transitions and estimate the amount of computation that would require.

This work was funded, in part, by the Swiss National Science Foundation, the MIT-Switzerland Lockheed Martin Seed Fund, and MIT International Science and Technology Initiatives.

Share this news article on:

Press mentions.

Researchers at MIT and elsewhere have developed a new machine-learning model capable of “predicting a physical system’s phase or state,” report Kyle Wiggers and Devin Coldewey for TechCrunch . 

Previous item Next item

Related Links

  • Frank Schäfer
  • Alan Edelman
  • Computer Science and Artificial Intelligence Laboratory
  • Department of Mathematics
  • Department of Electrical Engineering and Computer Science

Related Topics

  • Mathematics
  • Computer science and technology
  • Artificial intelligence
  • Computer modeling
  • Computer Science and Artificial Intelligence Laboratory (CSAIL)
  • Electrical Engineering & Computer Science (eecs)

Related Articles

Thousands of tiny lights hang from the ceiling of an at least 15-story hotel-style atrium. They are seen from the ground looking up.

Technique could efficiently solve partial differential equations for numerous applications

3 renderings of molecules are placed on the peaks of stylized bell curves. The 3 molecules look similar, but the left structure has a section made of glowing white pieces, alluding to a reaction.

Computational model captures the elusive transition states of chemical reactions

Large red text says “AI” in front of a dynamic, colorful, swirling background. 2 floating hands made of dots attempt to grab the text, and strange glowing blobs dance around the image.

Explained: Generative AI

Conceptual image of an open box that has sparks flying out on a black background. The lid of the box resembles that of a laptop computer screen.

From physics to generative AI: An AI model for advanced pattern generation

More mit news.

A phone plays an abstract video. A neural network surrounds the phone and points to the video’s timeline.

Looking for a specific action in a video? This AI-based method can find it for you

Read full story →

Three icons of a hand holding a wand transform three images into new pictures. In one, a Baby Yoda toy becomes transparent; in another, a brown purse becomes rougher in texture; and in the last, a goldfish turns white.

Controlled diffusion model can change material properties in images

Headshot of Sophia Chen against a bright blue wall

Sophia Chen: It’s our duty to make the world better through empathy, patience, and respect

Ten people clad in white protective clothing covering all but their eyes, which are behind safety glasses, pose as a group inside a nanotechnology cleanroom.

Using art and science to depict the MIT family from 1861 to the present

Cindy Xie leans against a partition, and in the blurry background is a grid of posters.

Convening for cultural change

Portrait photo of Kate Brown leaning against a white door

Q&A: The power of tiny gardens and their role in addressing climate change

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

Help | Advanced Search

Computer Science > Machine Learning

Title: physics informed cell representations for variational formulation of multiscale problems.

Abstract: With the rapid advancement of graphical processing units, Physics-Informed Neural Networks (PINNs) are emerging as a promising tool for solving partial differential equations (PDEs). However, PINNs are not well suited for solving PDEs with multiscale features, particularly suffering from slow convergence and poor accuracy. To address this limitation of PINNs, this article proposes physics-informed cell representations for resolving multiscale Poisson problems using a model architecture consisting of multilevel multiresolution grids coupled with a multilayer perceptron (MLP). The grid parameters (i.e., the level-dependent feature vectors) and the MLP parameters (i.e., the weights and biases) are determined using gradient-descent based optimization. The variational (weak) form based loss function accelerates computation by allowing the linear interpolation of feature vectors within grid cells. This cell-based MLP model also facilitates the use of a decoupled training scheme for Dirichlet boundary conditions and a parameter-sharing scheme for periodic boundary conditions, delivering superior accuracy compared to conventional PINNs. Furthermore, the numerical examples highlight improved speed and accuracy in solving PDEs with nonlinear or high-frequency boundary conditions and provide insights into hyperparameter selection. In essence, by cell-based MLP model along with the parallel tiny-cuda-nn library, our implementation improves convergence speed and numerical accuracy.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Physics LibreTexts

1.8: Solving Problems in Physics

  • Last updated
  • Save as PDF
  • Page ID 46031

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Describe the process for developing a problem-solving strategy.
  • Explain how to find the numerical solution to a problem.
  • Summarize the process for assessing the significance of the numerical solution to a problem.

Problem-solving skills are clearly essential to success in a quantitative course in physics. More important, the ability to apply broad physical principles—usually represented by equations—to specific situations is a very powerful form of knowledge. It is much more powerful than memorizing a list of facts. Analytical skills and problem-solving abilities can be applied to new situations whereas a list of facts cannot be made long enough to contain every possible circumstance. Such analytical skills are useful both for solving problems in this text and for applying physics in everyday life.

A photograph of a student’s hand, working on a problem with an open textbook, a calculator, and an eraser.

As you are probably well aware, a certain amount of creativity and insight is required to solve problems. No rigid procedure works every time. Creativity and insight grow with experience. With practice, the basics of problem solving become almost automatic. One way to get practice is to work out the text’s examples for yourself as you read. Another is to work as many end-of-section problems as possible, starting with the easiest to build confidence and then progressing to the more difficult. After you become involved in physics, you will see it all around you, and you can begin to apply it to situations you encounter outside the classroom, just as is done in many of the applications in this text.

Although there is no simple step-by-step method that works for every problem, the following three-stage process facilitates problem solving and makes it more meaningful. The three stages are strategy, solution, and significance. This process is used in examples throughout the book. Here, we look at each stage of the process in turn.

Strategy is the beginning stage of solving a problem. The idea is to figure out exactly what the problem is and then develop a strategy for solving it. Some general advice for this stage is as follows:

  • Examine the situation to determine which physical principles are involved . It often helps to draw a simple sketch at the outset. You often need to decide which direction is positive and note that on your sketch. When you have identified the physical principles, it is much easier to find and apply the equations representing those principles. Although finding the correct equation is essential, keep in mind that equations represent physical principles, laws of nature, and relationships among physical quantities. Without a conceptual understanding of a problem, a numerical solution is meaningless.
  • Make a list of what is given or can be inferred from the problem as stated (identify the “knowns”) . Many problems are stated very succinctly and require some inspection to determine what is known. Drawing a sketch be very useful at this point as well. Formally identifying the knowns is of particular importance in applying physics to real-world situations. For example, the word stopped means the velocity is zero at that instant. Also, we can often take initial time and position as zero by the appropriate choice of coordinate system.
  • Identify exactly what needs to be determined in the problem (identify the unknowns). In complex problems, especially, it is not always obvious what needs to be found or in what sequence. Making a list can help identify the unknowns.
  • Determine which physical principles can help you solve the problem . Since physical principles tend to be expressed in the form of mathematical equations, a list of knowns and unknowns can help here. It is easiest if you can find equations that contain only one unknown—that is, all the other variables are known—so you can solve for the unknown easily. If the equation contains more than one unknown, then additional equations are needed to solve the problem. In some problems, several unknowns must be determined to get at the one needed most. In such problems it is especially important to keep physical principles in mind to avoid going astray in a sea of equations. You may have to use two (or more) different equations to get the final answer.

The solution stage is when you do the math. Substitute the knowns (along with their units) into the appropriate equation and obtain numerical solutions complete with units . That is, do the algebra, calculus, geometry, or arithmetic necessary to find the unknown from the knowns, being sure to carry the units through the calculations. This step is clearly important because it produces the numerical answer, along with its units. Notice, however, that this stage is only one-third of the overall problem-solving process.

Significance

After having done the math in the solution stage of problem solving, it is tempting to think you are done. But, always remember that physics is not math. Rather, in doing physics, we use mathematics as a tool to help us understand nature. So, after you obtain a numerical answer, you should always assess its significance:

  • Check your units . If the units of the answer are incorrect, then an error has been made and you should go back over your previous steps to find it. One way to find the mistake is to check all the equations you derived for dimensional consistency. However, be warned that correct units do not guarantee the numerical part of the answer is also correct.
  • Check the answer to see whether it is reasonable. Does it make sense? This step is extremely important: –the goal of physics is to describe nature accurately. To determine whether the answer is reasonable, check both its magnitude and its sign, in addition to its units. The magnitude should be consistent with a rough estimate of what it should be. It should also compare reasonably with magnitudes of other quantities of the same type. The sign usually tells you about direction and should be consistent with your prior expectations. Your judgment will improve as you solve more physics problems, and it will become possible for you to make finer judgments regarding whether nature is described adequately by the answer to a problem. This step brings the problem back to its conceptual meaning. If you can judge whether the answer is reasonable, you have a deeper understanding of physics than just being able to solve a problem mechanically.
  • Check to see whether the answer tells you something interesting. What does it mean? This is the flip side of the question: Does it make sense? Ultimately, physics is about understanding nature, and we solve physics problems to learn a little something about how nature operates. Therefore, assuming the answer does make sense, you should always take a moment to see if it tells you something about the world that you find interesting. Even if the answer to this particular problem is not very interesting to you, what about the method you used to solve it? Could the method be adapted to answer a question that you do find interesting? In many ways, it is in answering questions such as these science that progresses.

More From Forbes

Oxford geoscience professor myles allen on solving the problem of climate change.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

This week I had the pleasure of meeting Myles Allen . He is Head of Atmospheric, Oceanic and Planetary Physics in the Department of Physics, University of Oxford, and Professor of Geoscience in the School of Geography and Environment. He’s been studying how human and natural influences contribute to climate change since the early 1990s, served on the UN Intergovernmental Panel on Climate Change (IPCC) for its 3rd, 4th and 5th Assessments, and was a Coordinating Lead Author for its special report on 'the impacts of global warming of 1.5 °C above pre-industrial levels,’ and has been dubbed by the BBC “ the physicist behind net zero ”. In short, his scientific credentials regarding climate change are superb.

Professor Myles Allen Delivering The Gresham Lecture on May 21, 2024

But unlike many science professors, Professor Allen is bravely wading into the world of climate policy. The timing of my meeting with Professor Allen was fortuitous. It was the day before he gave a lecture on May 21, 2024, in his capacity as the Frank Jackson Professor of the Environment as part of the annual series of lectures hosted by Gresham College in the City of London. Gresham (b. 1519, d. 1579) was an English merchant, financier, and founder of the Royal Exchange. He started these lectures to ensure the emerging merchant classes were culturally enriched, as well as being versed in the latest science and technology.

The title of Professor Allen’s lecture is “ A Just and Inclusive Net Zero .” You can also view it online , which I highly recommend. The lecture is both global in its ideas and local in terms of the climate change debate taking place in the UK. I am less familiar with this than I am in the United States, and it was through this lens that I read and then listened to his lecture. My overall impression is how pragmatic and non-ideological it is. Professor Allen is no more an apologist for the fossil fuel industry than he is a supporter of the fossil fuel haters. Neither group brings value to the discussion of how to address climate change. Professor Allen does.

Sir Thomas Gresham

While I can’t do justice to his full lecture in this brief summary, here are four points that leaped out to me.

The first is he notes that “in the Paris-aligned scenarios of the IPCC, we are still using fossil fuels, at around one-quarter of the current rate, in 2100, long after the date of net zero.” Today’s world population of eight billion people will have grown to nearly 10 billion, with hopefully a larger percentage leading lives closer to what is enjoyed in the developed world. That means a LOT of fossil fuels. Those who harbor the fantasy that we still have time to achieve our climate goals simply by phasing out fossil fuel use need to get real. “One of the most dangerous myths is that achieving net zero is actually going to be really cheap because carbon-free, instantly-dispatchable energy” will soon take care of all of our energy needs. Nope. Even with the best of battery technologies it will be intermittent, and we’ll need natural gas and nuclear for the baseload.

Janet Yellen Issues Serious 34 Trillion Warning As Bitcoin Predicted To Surge To 1 Million Price

Samsung slashes galaxy s24 price in a major new promotion, playstation plus free june games lineup revealed along with days of play bonus freebies.

People also need to be realistic about some of the barriers to reducing fossil fuel use as rapidly as possible, with permitting being the number one in my mind. Environmentalists protesting transmission lines for bringing renewable power into the grid are part of the problem, not part of the solution. A great local example for me is the Northern Pass project for bringing cheap hydro power from Canada to Massachusetts, which I have written about with John Skjervem, the CIO of Utah Retirement Systems. Permitting extends to domestic mining of the cobalt and rare earths for battery and renewable energy technologies in order to ensure energy security and not being dependent on places like China, Russia, and the Democratic Republic of Congo for getting them.

Second, he calls out what he calls the “climate establishment” filled with those who regard themselves as elite experts who know better than the average citizen what needs to be done, such as “the unelected technocrats like the [UK] Climate Change Committee , the Science-Based Targets Initiative , or the Climate Action Tracker. ” Their perceived arrogance (whether it is real or not doesn’t matter) and disregard for which climate policies will be acceptable to those who will be subject to them is, again, part of the problem, not part of the solution. You can add to that bureaucrats in Brussels. As one example, he drolly quotes the Carbon Border Adjustment Mechanism, “or CBAM, is, in a nutshell, the European Union deciding that it has the right to impose punitive tariffs on imports from countries whose climate policies a team of bureaucrats in Brussels have decided aren’t good enough. I recently heard a talk from one such bureaucrat, I’m sure a very well-intentioned and intelligent chap, in which he said ‘of course, the CBAM is not neo-colonialist.’ If you have to assure people your policy is not neo-colonialist, you have a problem.”

Barnards Inn Hall, Gresham College, Where The Gresham Lecture Is Delivered

Professor Allen rightly suggests that these elite experts should “talking to people who wouldn’t normally show up in their social networks, like populist talk-show hosts, livestock farmers – and the executives of fossil fuel companies.” To that I’d like to add conservatives who are dedicating their lives to addressing climate change. On New Year’s Eve of 2023 I wrote about them and keep finding more. The “Eco-Right” has a very important role to play, and the climate establishment needs to show a little humility (yes, conservatives can have some very good ideas!) and be less self-righteous and start talking to them.

Third, while the “climate establishment” likes to talk about a Just Transition, it largely ignores what is just for the average citizen. Not everyone can go out and replace gas with heat pumps and buy an electric car. Yes, we need to think about a Just Transition for emerging markets, but in the U.S., we also need to think about what this means for low and middle income people in both red and blue states. Professor Allen also provocatively suggests “justice for the fossil fuel industry” which extends beyond “protecting workers in carbon intensive industries, or the interests of new fossil fuel producers, in ways that that just happens, surprise, surprise, to suit the fossil fuel industry itself rather well” to the shareholders of fossil fuel companies and people who benefit from their products—which is pretty much every single one of us.

Justice for the fossil fuel industry means acknowledging its right and need to exist but also holding it accountable for the carbon it produces. As Professor Allen notes, “The greatest climate injustice of all, to my mind, is the fact that the most profitable industry the world has ever known is entirely dependent on selling a product that is causing a very serious problem and no one is even asking them to fix it.” So how to fix it? Here are a few ways that spring to my mind of how not to fix it: (1) divesting from fossil fuel stocks in the naïve belief this will keep them from producing their product (but fine to do so if you don’t believe in the long-term value proposition or you’re just not ethically comfortable holding these stocks), (2) yelling at banks who provide them financing, (3) demanding that fossil fuel companies have unrealistic plans for reducing their investments and production, (4) urging them to get into the renewable energy business (their business model and capabilities don’t lend themselves to this), (5) opposing carbon capture storage technologies using the argument they just prolong the life of the fossil fuel industry, (6) thinking that reporting on Scope 3 emissions will somehow reduce the demand of their customers, and (7) filing useless shareholder proposals using the language of “value creation” to mask a basic hatred of the industry (which all the haters depend on).

Professor Myles Allen: “They just told me to write some physics on the board”

Which gets me to my fourth and last point. What is the solution? “There really is only one way to stop fossil fuels from causing global warming before the world stops using fossil fuels: we have to capture the carbon dioxide they generate and dispose of it, permanently, back underground.” The “underground” part is important. Turning fossil carbon into trees, water, and topsoil only delays its release into the atmosphere. The fossil fuel industry should take responsibility for doing this. It can start modestly, say one percent of the carbon it produces and building up to 100% by 2050. Let’s call this number the “geologically stored fraction.” This is what investors should be focused on, not Scope 3 emissions (although Scope 1 and 2 are fair game). Making this happen will require a mix of regulatory and market forces.

Can this be done? Absolutely. While fossil fuel companies don’t know wind and solar, they for sure know geological carbon management. The industry has a history of innovation and deep technological and engineering expertise for getting fossil fuels out of the ground, which often involving injecting stuff back into the ground. No question in my mind that it can figure out effective and cost efficient ways of putting carbon dioxide back underground at the scale required. In the beginning, the costs of doing so may be so small they just become a cost of doing business and preserving its needed license to operate. Ultimately, the costs will be borne by both the industry and its customers, which includes all of us. But if we want less carbon in the atmosphere but still want to enjoy the benefits of generating it, we must all be willing to pay our fair share for getting rid of it.

Robert G. Eccles

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

  • Share full article

Advertisement

Supported by

The Algebra Problem: How Middle School Math Became a National Flashpoint

Top students can benefit greatly by being offered the subject early. But many districts offer few Black and Latino eighth graders a chance to study it.

The arms of a student are seen leaning on a desk. One hand holds a pencil and works on algebra equations.

By Troy Closson

From suburbs in the Northeast to major cities on the West Coast, a surprising subject is prompting ballot measures, lawsuits and bitter fights among parents: algebra.

Students have been required for decades to learn to solve for the variable x, and to find the slope of a line. Most complete the course in their first year of high school. But top-achievers are sometimes allowed to enroll earlier, typically in eighth grade.

The dual pathways inspire some of the most fiery debates over equity and academic opportunity in American education.

Do bias and inequality keep Black and Latino children off the fast track? Should middle schools eliminate algebra to level the playing field? What if standout pupils lose the chance to challenge themselves?

The questions are so fraught because algebra functions as a crucial crossroads in the education system. Students who fail it are far less likely to graduate. Those who take it early can take calculus by 12th grade, giving them a potential edge when applying to elite universities and lifting them toward society’s most high-status and lucrative professions.

But racial and economic gaps in math achievement are wide in the United States, and grew wider during the pandemic. In some states, nearly four in five poor children do not meet math standards.

To close those gaps, New York City’s previous mayor, Bill de Blasio, adopted a goal embraced by many districts elsewhere. Every middle school would offer algebra, and principals could opt to enroll all of their eighth graders in the class. San Francisco took an opposite approach: If some children could not reach algebra by middle school, no one would be allowed to take it.

The central mission in both cities was to help disadvantaged students. But solving the algebra dilemma can be more complex than solving the quadratic formula.

New York’s dream of “algebra for all” was never fully realized, and Mayor Eric Adams’s administration changed the goal to improving outcomes for ninth graders taking algebra. In San Francisco, dismantling middle-school algebra did little to end racial inequities among students in advanced math classes. After a huge public outcry, the district decided to reverse course.

“You wouldn’t think that there could be a more boring topic in the world,” said Thurston Domina, a professor at the University of North Carolina. “And yet, it’s this place of incredibly high passions.”

“Things run hot,” he said.

In some cities, disputes over algebra have been so intense that parents have sued school districts, protested outside mayors’ offices and campaigned for the ouster of school board members.

Teaching math in middle school is a challenge for educators in part because that is when the material becomes more complex, with students moving from multiplication tables to equations and abstract concepts. Students who have not mastered the basic skills can quickly become lost, and it can be difficult for them to catch up.

Many school districts have traditionally responded to divergent achievement levels by simply separating children into distinct pathways, placing some in general math classes while offering others algebra as an accelerated option. Such sorting, known as tracking, appeals to parents who want their children to reach advanced math as quickly as possible.

But tracking has cast an uncomfortable spotlight on inequality. Around a quarter of all students in the United States take algebra in middle school. But only about 12 percent of Black and Latino eighth graders do, compared with roughly 24 percent of white pupils, a federal report found .

“That’s why middle school math is this flashpoint,” said Joshua Goodman, an associate professor of education and economics at Boston University. “It’s the first moment where you potentially make it very obvious and explicit that there are knowledge gaps opening up.”

In the decades-long war over math, San Francisco has emerged as a prominent battleground.

California once required that all eighth graders take algebra. But lower-performing middle school students often struggle when forced to enroll in the class, research shows. San Francisco later stopped offering the class in eighth grade. But the ban did little to close achievement gaps in more advanced math classes, recent research has found.

As the pendulum swung, the only constant was anger. Leading Bay Area academics disparaged one another’s research . A group of parents even sued the district last spring. “Denying students the opportunity to skip ahead in math when their intellectual ability clearly allows for it greatly harms their potential for future achievement,” their lawsuit said.

The city is now back to where it began: Middle school algebra — for some, not necessarily for all — will return in August. The experience underscored how every approach carries risks.

“Schools really don’t know what to do,” said Jon R. Star, an educational psychologist at Harvard who has studied algebra education. “And it’s just leading to a lot of tension.”

In Cambridge, Mass., the school district phased out middle school algebra before the pandemic. But some argued that the move had backfired: Families who could afford to simply paid for their children to take accelerated math outside of school.

“It’s the worst of all possible worlds for equity,” Jacob Barandes, a Cambridge parent, said at a school board meeting.

Elsewhere, many students lack options to take the class early: One of Philadelphia’s most prestigious high schools requires students to pass algebra before enrolling, preventing many low-income children from applying because they attend middle schools that do not offer the class.

In New York, Mr. de Blasio sought to tackle the disparities when he announced a plan in 2015 to offer algebra — but not require it — in all of the city’s middle schools. More than 15,000 eighth graders did not have the class at their schools at the time.

Since then, the number of middle schools that offer algebra has risen to about 80 percent from 60 percent. But white and Asian American students still pass state algebra tests at higher rates than their peers.

The city’s current schools chancellor, David Banks, also shifted the system’s algebra focus to high schools, requiring the same ninth-grade curriculum at many schools in a move that has won both support and backlash from educators.

And some New York City families are still worried about middle school. A group of parent leaders in Manhattan recently asked the district to create more accelerated math options before high school, saying that many young students must seek out higher-level instruction outside the public school system.

In a vast district like New York — where some schools are filled with children from well-off families and others mainly educate homeless children — the challenge in math education can be that “incredible diversity,” said Pedro A. Noguera, the dean of the University of Southern California’s Rossier School of Education.

“You have some kids who are ready for algebra in fourth grade, and they should not be denied it,” Mr. Noguera said. “Others are still struggling with arithmetic in high school, and they need support.”

Many schools are unequipped to teach children with disparate math skills in a single classroom. Some educators lack the training they need to help students who have fallen behind, while also challenging those working at grade level or beyond.

Some schools have tried to find ways to tackle the issue on their own. KIPP charter schools in New York have added an additional half-hour of math time to many students’ schedules, to give children more time for practice and support so they can be ready for algebra by eighth grade.

At Middle School 50 in Brooklyn, where all eighth graders take algebra, teachers rewrote lesson plans for sixth- and seventh-grade students to lay the groundwork for the class.

The school’s principal, Ben Honoroff, said he expected that some students would have to retake the class in high school. But after starting a small algebra pilot program a few years ago, he came to believe that exposing children early could benefit everyone — as long as students came into it well prepared.

Looking around at the students who were not enrolling in the class, Mr. Honoroff said, “we asked, ‘Are there other kids that would excel in this?’”

“The answer was 100 percent, yes,” he added. “That was not something that I could live with.”

Troy Closson reports on K-12 schools in New York City for The Times. More about Troy Closson

COMMENTS

  1. Phy

    Snap a picture of the problem straight from your phone. Phy automatically generates short follow ups. Just click it. Customize your learning to help Phy adapt to you even quicker. View all chats with Phy, save to notes, & create study guides. The more you solve, the better Phy adapts to your learning style.

  2. Step-by-Step Calculator

    Symbolab is the best step by step calculator for a wide range of physics problems, including mechanics, electricity and magnetism, and thermodynamics. ... How to solve math problems step-by-step? To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the ...

  3. Mathway

    Free math problem solver answers your physics homework questions with step-by-step explanations. Mathway. Visit Mathway on the web. Start 7-day free trial on the app ... Download free on Amazon. Download free in Windows Store. get Go. Physics. Basic Math. Pre-Algebra. Algebra. Trigonometry. Precalculus. Calculus. Statistics. Finite Math. Linear ...

  4. 1.8: Solving Problems in Physics

    This page titled 1.8: Solving Problems in Physics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request. The three stages of the process for solving physics problems used ...

  5. Physics Calculator & Solver

    Get detailed solutions to your math problems with our Physics step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here. Go! Symbolic mode. ... Calculators Topics Solving Methods YouTube.

  6. Brilliant

    Brilliant - Build quantitative skills in math, science, and computer science with hands-on, interactive lessons.

  7. PDF An Expert's Approach to Solving Physics Problems

    An example problem, its solution, and annotations on the process of solving the problem. The solutions to the problems from past exams will help you see what a good solution looks like. But seeing the solution alone may not illustrate the general method that could be used to solve other problems.

  8. 1.7 Solving Problems in Physics

    Notice, however, that this stage is only one-third of the overall problem-solving process. Significance. After having done the math in the solution stage of problem solving, it is tempting to think you are done. But, always remember that physics is not math. Rather, in doing physics, we use mathematics as a tool to help us understand nature.

  9. Physics 1: Mechanics Online Math Course

    Physics 1: Mechanics. Physics 1: Mechanics brings together advanced problem solvers to explore key concepts in physics. Experienced instructors guide students to creatively solve problems in kinematics, forces, Newton's laws, Newtonian gravity, fluid statics and dynamics, and more. Course materials include handouts and homework sets.

  10. Newton's Law Problem Sets

    Problem 22: Brandon is the catcher for the Varsity baseball team. He exerts a forward force on the .145-kg baseball to bring it to rest from a speed of 38.2 m/s. During the process, his hand recoils a distance of 0.135 m. Determine the acceleration of the ball and the force which is applied to it by Brandon.

  11. 1.4: Solving Physics Problems

    Trigonometry and Solving Physics Problems. In physics, most problems are solved much more easily when a free body diagram is used. Free body diagrams use geometry and vectors to visually represent the problem. ... The branch of mathematics that deals with the relationships between the sides and the angles of triangles and the calculations based ...

  12. Kinematic Equations: Sample Problems and Solutions

    A useful problem-solving strategy was presented for use with these equations and two examples were given that illustrated the use of the strategy. Then, the application of the kinematic equations and the problem-solving strategy to free-fall motion was discussed and illustrated. In this part of Lesson 6, several sample problems will be presented.

  13. Problem Solving

    where [math]\displaystyle{ y_{i} }[/math] is the current passing through edge [math]\displaystyle{ i }[/math]. If a circuit has a source like a battery, we can treat the entire circuit as a node. The current in and out of every node within the circuit will be zero except for the nodes connected to the positive and negative ends of the battery.

  14. The Ultimate Problem-Solving Strategy

    The Feynman technique for solving complex problems. Problem-solving strategies which I used at the International Physics Olympiad, as well as many math and c...

  15. How to Solve Any Physics Problem: 10 Steps (with Pictures)

    Calm down. It is just a problem, not the end of the world! 2. Read through the problem once. If it is a long problem, read and understand it in parts till you get even a slight understanding of what is going on. 3. Draw a diagram. It cannot be emphasized enough how much easier a problem will be once it is drawn out.

  16. The Calculator Pad: Physics Problem-Solving

    Version 2 of our Calculator Pad was introduced in August of 2022. It includes six times as many problems and several additional topics (including Chemistry topics). Problem sets have been broken down into more than 400 smaller, single-topic problem sets. Problems utilize a random number generator to provide numerical information that is unique ...

  17. Math / Physics Problem Solver

    This program solves simple math and physics problems stated in English. Enter the question here: Click to submit the request. Physical principles, variables, equations. Example problems include: What is the area of a circle with circumference = 10 meters? What is the volume of a cone with radius 2 m and height 3 m.

  18. Problem Daily

    Problem Daily | Free Daily Training For Problem Solving in Physics, Math, and More! Display Answer. Word problems from physics and other subjects are carefully constructed and auto-generated. Click below to reveal the answer, and a systematic approach to solving it!

  19. Art of Problem Solving

    Engaging math books and online learning for students ages 6-13. Visit Beast Academy ... Physics is a branch of science that studies the properties of matter, energy, and many more. Physics is considered to be the most fundamental of all the sciences, and is also the oldest. ... Art of Problem Solving is an ACS WASC Accredited School. aops ...

  20. AI Physics Solver

    Reach out to us at [email protected] or click the Help beacon in the bottom right corner of the screen if you're still having trouble! Scan-and-solve physics problems for free with the first AI-powered physics equation solver. Perform calculations, solve equations, and get step-by-step solutions in seconds.

  21. Physics, 12th Edition

    <p>Physics, 12th Edition focuses on conceptual understanding, problem solving, and providing real-world applications and relevance. Conceptual examples, Concepts and Calculations problems, and Check Your Understanding questions help students understand physics principles. Math Skills boxes, multi-concept problems, and Examples with reasoning steps help students improve their reasoning ...

  22. Analyzing problem solving using math in physics: Epistemological

    For the context of mathematics use in physics problem solving, we present a system for classifying physics students' warrants and analyze a case study. This warrant analysis provides a general widely applicable technique for identifying students' epistemological framings. DOI: 10.1103/PhysRevSTPER.5.020108 PACS number s : 01.40.Fk, 01.30.lb

  23. Scientists use generative AI to answer complex questions in physics

    The MIT researchers demonstrated how generative models can be used to solve this classification task much more efficiently, and in a physics-informed manner. The Julia Programming Language , a popular language for scientific computing that is also used in MIT's introductory linear algebra classes, offers many tools that make it invaluable for ...

  24. Physics-Informed Neural Network with Forcing Function

    Equation 1 Analytic solution. The analytic solution to Equation 1 requires solving the equation for three cases depending upon the relationship between λ and ω₀.As seen below, each results in a complicated and unique formula for i(t).In tests presented later in Results, these solutions will be compared against results produced by a PINN.The PINN will produce the solution directly from the ...

  25. Math Message Boards FAQ & Community Help

    J. exterior angle. L. B Bookmark N Reply. Source: Indian RMO 1995 Problem 1. Rushil. 1592 posts. #1 Oct 25, 2005, 7:32 PM • 2 Y. In triangle , and are points on the side ( being closer to than ) such that and bisects .

  26. 5 Concepts From Physics That Could Give You An Edge As A ...

    Certain physics concepts can provide valuable mental models for decision-making, strategy development, and problem-solving. So, in this article, we discuss five essential ideas coming from physics ...

  27. [2405.16770] Physics informed cell representations for variational

    With the rapid advancement of graphical processing units, Physics-Informed Neural Networks (PINNs) are emerging as a promising tool for solving partial differential equations (PDEs). However, PINNs are not well suited for solving PDEs with multiscale features, particularly suffering from slow convergence and poor accuracy. To address this limitation of PINNs, this article proposes physics ...

  28. 1.8: Solving Problems in Physics

    Such analytical skills are useful both for solving problems in this text and for applying physics in everyday life. . Figure 1.8.1 1.8. 1: Problem-solving skills are essential to your success in physics. (credit: "scui3asteveo"/Flickr) As you are probably well aware, a certain amount of creativity and insight is required to solve problems.

  29. Professor Myles Allen On Solving The Problem Of Climate Change

    Professor Myles Allen Delivering The Gresham Lecture on May 21, 2024. But unlike many science professors, Professor Allen is bravely wading into the world of climate policy. The timing of my ...

  30. The Algebra Problem: How Middle School Math Became a National

    Around a quarter of all students in the United States take algebra in middle school. But only about 12 percent of Black and Latino eighth graders do, compared with roughly 24 percent of white ...