Electronics Research Paper Topics

Academic Writing Service

This list of electronics research paper topics provides the list of 30 potential topics for research papers and an overview article on the history of electronics.

1. Applications of Superconductivity

The 1986 Applied Superconductivity Conference proclaimed, ‘‘Applied superconductivity has come of age.’’ The claim reflected only 25 years of development, but was justifiable due to significant worldwide interest and investment. For example, the 1976 annual budget for superconducting systems exceeded $30 million in the U.S., with similar efforts in Europe and Japan. By 1986 the technology had matured impressively into applications for the energy industry, the military, transportation, high-energy physics, electronics, and medicine. The announcement of high-temperature superconductivity just two months later brought about a new round of dramatic developments.

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code, 2. discovery of superconductivity.

As the twenty-first century began, an array of superconducting applications in high-speed electronics, medical imaging, levitated transportation, and electric power systems are either having, or will soon have, an impact on the daily life of millions. Surprisingly, at the beginning of the twentieth century, the discovery of superconductivity was completely unanticipated and unimagined.

In 1911, three years after liquefying helium, H. Kammerlingh Onnes of the University of Leiden discovered superconductivity while investigating the temperature-dependent resistance of metals below 4.2Kelvin. Later reporting on experiments conducted in 1911, he described the disappearance of the resistance of mercury, stating, ‘‘Within some hundredths of a degree came a sudden fall, not foreseen [by existing theories of resistance]. Mercury has passed into a new state, which . . . may be called the superconductive state.’’

3. Electric Motors

The main types of electric motors that drove twentieth century technology were developed toward the end of the nineteenth century, with direct current (DC) motors being introduced before alternating current (AC) ones. Most important initially was the ‘‘series’’ DC motor, used in electric trolleys and trains from the 1880s onward. The series motor exerts maximum torque on starting and then accelerates to its full running speed, the ideal characteristic for traction work. Where speed control independent of the load is required in such applications as crane and lift drives, the ‘‘shunt’’ DC motor is more suitable.

4. Electronic Calculators

The electronic calculator is usually inexpensive and pocket-sized, using solar cells for its power and having a gray liquid crystal display (LCD) to show the numbers. Depending on the sophistication, the calculator might simply perform the basic mathematical functions (addition, subtraction, multiplication, division) or might include scientific functions (square, log, trig). For a slightly higher cost, the calculator will probably include programmable scientific and business functions. At the end of the twentieth century, the electronic calculator was as commonplace as a screwdriver and helped people deal with all types of mathematics on an everyday basis. Its birth and growth were early steps on the road to today’s world of computing.

5. Electronic Communications

The broad use of digital electronic message communications in most societies by the end of the 20th century can be attributed to a myriad of reasons. Diffusion was incremental and evolutionary. Digital communication technology was seeded by large-scale funding for military projects that broke technological ground, however social needs and use drove systems in unexpected ways and made it popular because these needs were embraced. Key technological developments happened long before diffusion into society, and it was only after popularity of the personal computer that global and widespread use became commonplace. The Internet was an important medium in this regard, however the popular uses of it were well established long before its success. Collaborative developments with open, mutually agreed standards were key factors in broader diffusion of the low-level transmission of digital data, and provided resistance to technological lock-in by any commercial player. By the twenty-first century, the concept of interpersonal electronic messaging was accepted as normal and taken for granted by millions around the world, where infrastructural and political freedoms permitted. As a result, traditional lines of information control and mass broadcasting were challenged, although it remains to be seen what, if any, long-term impact this will have on society.

6. Electronic Control Technology

The advancement of electrical engineering in the twentieth century made a fundamental change in control technology. New electronic devices including vacuum tubes (valves) and transistors were used to replace electromechanical elements in conventional controllers and to develop new types of controllers. In these practices, engineers discovered basic principles of control theory that could be further applied to design electronic control systems.

7. Fax Machine

Fax technology was especially useful for international commercial communication, which was traditionally the realm of the Telex machine, which only relayed Western alpha-numeric content. A fax machine could transmit a page of information regardless of what information it contained, and this led to rapid and widespread adoption in developing Asian countries during the 1980s. With the proliferation of the Internet and electronic e-mail in the last decade of the twentieth century, fax technology became less used for correspondence. At the close of the 20th century, the fax machine was still widely used internationally for the transmission of documents of all forms, with the ‘‘hard copy’’ aspect giving many a sense of permanence that other electronic communication lacked.

8. Hall Effect Devices

The ‘‘Hall effect,’’ discovered in 1879 by American physicist Edwin H. Hall, is the electrical potential produced when a magnetic field is perpendicular to a conductor or semiconductor that is carrying current. This potential is a product of the buildup of charges in that conductor. The magnetic field makes a transverse force on the charge carriers, resulting in the charge being moved to one of the sides of the conductor. Between the sides of the conductor, measurable voltage is yielded from the interaction and balancing of the polarized charge and the magnetic influence.

Hall effect devices are commonly used as magnetic field sensors, or alternatively if a known magnetic field is applied, the sensor can be used to measure the current in a conductor, without actually plugging into it (‘‘contactless potentiometers’’). Hall sensors can also be used as magnetically controlled switches, and as a contactless method of detecting rotation and position, sensing ferrous objects.

9. Infrared Detectors

Infrared detectors rely on the change of a physical characteristic to sense illumination by infrared radiation (i.e., radiation having a wavelength longer than that of visible light). The origins of such detectors lie in the nineteenth century, although their development, variety and applications exploded during the twentieth century. William Herschel (c. 1800) employed a thermometer to detect this ‘‘radiant heat’’; Macedonio Melloni, (c. 1850) invented the ‘‘thermochrose’’ to display spatial differences of irradiation as color patterns on a temperature-sensitive surface; and in 1882 William Abney found that photographic film could be sensitized to respond to wavelengths beyond the red end of the spectrum. Most infrared detectors, however, convert infrared radiation into an electrical signal via a variety of physical effects. Here, too, 19th century innovations continued in use well into the 21st century.

10. Integrated Circuits Design and Use

Integrated circuits (ICs) are electronic devices designed to integrate a large number of microscopic electronic components, normally connected by wires in circuits, within the same substrate material. According to the American engineer Jack S. Kilby, they are the realization of the so-called ‘‘monolithic idea’’: building an entire circuit out of silicon or germanium. ICs are made out of these materials because of their properties as semiconductors— materials that have a degree of electrical conductivity between that of a conductor such as metal and that of an insulator (having almost no conductivity at low temperatures). A piece of silicon containing one circuit is called a die or chip. Thus, ICs are known also as microchips. Advances in semiconductor technology in the 1960s (the miniaturization revolution) meant that the number of transistors on a single chip doubled every two years, and led to lowered microprocessor costs and the introduction of consumer products such as handheld calculators.

topics for research paper in electronics

11. Integrated Circuits Fabrication

The fabrication of integrated circuits (ICs) is a complicated process that consists primarily of the transfer of a circuit design onto a piece of silicon (the silicon wafer). Using a photolithographic technique, the areas of the silicon wafer to be imprinted with electric circuitry are covered with glass plates (photomasks), irradiated with ultraviolet light, and treated with chemicals in order to shape a circuit’s pattern. On the whole, IC manufacture consists of four main stages:

  • Preparation of a design
  • Preparation of photomasks and silicon wafers
  • Testing and packaging

Preparing an IC design consists of drafting the circuit’s electronic functions within the silicon board. This process has radically changed over the years due to the increasing complexity of design and the number of electronic components contained within the same IC. For example, in 1971, the Intel 4004 microprocessor was designed by just three engineers, while in the 1990s the Intel Pentium was designed by a team of 100 engineers. Moreover, the early designs were produced with traditional drafting techniques, while from the late 1970s onward the introduction of computer-aided design (CAD) techniques completely changed the design stage. Computers are used to check the design and simulate the operations of perspective ICs in order to optimize their performance. Thus, the IC drafted design can be modified up to 400 times before going into production.

12. Josephson Junction Devices

One of the most important implications of quantum physics is the existence of so-called tunneling phenomena in which elementary particles are able to cross an energy barrier on subatomic scales that it would not be possible for them to traverse were they subject to the laws of classical mechanics. In 1973 the Nobel Prize in Physics was awarded to Brian Josephson, Ivan Giaever and Leo Esaki for their work in this field. Josephson’s contribution consisted of a number of important theoretical predictions made while a doctoral student at Cambridge University. His work was confirmed experimentally within a year of its publication in 1961, and practical applications were commercialized within ten years.

13. Laser Applications

Lasers are employed in virtually every sector of the modern world including industry, commerce, transportation, medicine, education, science, and in many consumer devices such as CD players and laser printers. The intensity of lasers makes them ideal cutting tools since their highly focused beam cuts more accurately than machined instruments and leaves surrounding materials unaffected. Surgeons, for example, have employed carbon dioxide or argon lasers in soft tissue surgery since the early 1970s. These lasers produce infrared wavelengths of energy that are absorbed by water. Water in tissues is rapidly heated and vaporized, resulting in disintegration of the tissue. Visible wavelengths (argon ion laser) coagulate tissue. Far-ultraviolet wavelengths (higher photon energy, as produced by excimer lasers) break down molecular bonds in target tissue and ‘‘ablate’’ tissue without heating. Excimer lasers have been used in corneal surgery since 1984. Short pulses only affect the surface area of interest and not deeper tissues. The extremely small size of the beam, coupled with optical fibers, enables today’s surgeons to conduct surgery deep inside the human body often without a single cut on the exterior. Blue lasers, developed in 1994 by Shuji Nakamura of Nichia Chemical Industries of Japan, promise even more precision than the dominant red lasers currently used and will further revolutionize surgical cutting techniques.

14. Laser Theory and Operation

Lasers (an acronym for light amplification by stimulated emission of radiation) provide intense, focused beams of light whose unique properties enable them to be employed in a wide range of applications in the modern world. The key idea underlying lasers originated with Albert Einstein who published a paper in 1916 on Planck’s distribution law, within which he described what happens when additional energy is introduced into an atom. Atoms have a heavy and positively charged nucleus surrounded by groups of extremely light and negatively charged electrons. Electrons orbit the atom in a series of ‘‘fixed’’ levels based upon the degree of electromagnetic attraction between each single electron and the nucleus. Various orbital levels also represent different energy levels. Normally electrons remain as close to the nucleus as their energy level permits, with the consequence that an atom’s overall energy level is minimized. Einstein realized that when energy is introduced to an atom; for example, through an atomic collision or through electrical stimulation, one or more electrons become excited and move to a higher energy level. This condition exists temporarily before the electron returns to its former energy level. When this decay phenomenon occurs, a photon of light is emitted. Einstein understood that since the energy transitions within the atom are always identical, the energy and the wavelength of the stimulated photon of light are also predictable; that is, a specific type of transition within an atom will yield a photon of light of a specific wavelength. Hendrick Kramers and Werner Heisenberg obtained a series of more extensive calculations of the effects of these stimulated emissions over the next decade. The first empirical evidence supporting these theoretical calculations occurred between 1926 and 1930 in a series of experiments involving electrical discharges in neon.

15. Lasers in Optoelectronics

Optoelectronics, the field combining optics and electronics, is dependent on semiconductor (diode) lasers for its existence. Mass use of semiconductor lasers has emerged with the advent of CD and DVD technologies, but it is the telecommunications sector that has primarily driven the development of lasers for optoelectronic systems. Lasers are used to transmit voice, data, or video signals down fiber-optic cables.

While the success of lasers within telecommunication systems seems unquestioned thanks to their utility in long-distance large-capacity, point-to-point links, these lasers also find use in many other applications and are ubiquitous in the developed world. Their small physical size, low power operation, ease of modulation (via simple input current variation) and small beam size mean that these lasers are now part of our everyday world, from CDs and DVDs, to supermarket checkouts and cosmetic medicine.

16. Light Emitting Diodes

Light emitting diodes, or LEDs, are semiconductor devices that emit monochromatic light once an electric current passes through it. The color of light emitted from LEDs depends not on the color of the bulb, but on the emission’s wavelength. Typically made of inorganic materials like gallium or silicon, LEDs have found frequent use as ‘‘pilot,’’ or indicator, lights for electronic devices. Unlike incandescent light bulbs, which generate light from ‘‘heat glow,’’ LEDs create light more efficiently and are generally more durable than traditional light sources.

17. Lighting Techniques

In 1900 electric lighting in the home was a rarity. Carbon filament incandescent lamps had been around for 20 years, but few households had electricity. Arc lamps were used in streets and large buildings such as railway stations. Domestic lighting was by candle, oil and gas.

The stages of the lightning techniques evolution are the following:

  • Non-Electric Lighting
  • Electric Lighting: Filament Lamps
  • Electric Lighting: Discharge Lamps
  • Electric Lighting: Fluorescent Lamps
  • Electric Lighting: LED Lamps

18. Mechanical and Electromechanical Calculators

The widespread use of calculating devices in the twentieth century is intimately linked to the rise of large corporations and to the increasing role of mathematical calculation in science and engineering. In the business setting, calculators were used to efficiently process financial information. In science and engineering, calculators speeded up routine calculations. The manufacture and sale of calculators was a widespread industry, with major firms in most industrialized nations. However, the manufacture of mechanical calculators declined very rapidly in the 1970s with the introduction of electronic calculators, and firms either diversified into other product lines or went out of business. By the end of the twentieth century, slide rules, adding machines, and other mechanical calculators were no longer being manufactured.

19. Mobile (Cell) Telephones

In the last two decades of the twentieth century, mobile or cell phones developed from a minority communication tool, characterized by its prevalence in the 1980s among young professionals, to a pervasive cultural object. In many developed countries, more than three quarters of the population owned a cell phone by the end of the 20th century.

Cell phone technology is a highly evolved form of the personal radio systems used by truck drivers (citizens band, or CB, radio) and police forces in which receiver/transmitter units communicate with one another or a base antenna. Such systems work adequately over short distances with a low volume of traffic but cannot be expanded to cope with mass communication due to the limited space (bandwidth) available in the electromagnetic spectrum. Transmitting and receiving on one frequency, they allow for talking or listening but not both simultaneously.

For mobile radio systems to make the step up to effective telephony, a large number of two-way conversations needed to be accommodated, requiring a duplex channel (two separate frequencies, taking up double the bandwidth). In order to establish national mobile phone networks without limiting capacity or the range of travel of handsets, a number of technological improvements had to occur.

20. Photocopiers

The photocopier, copier, or copying machine, as it is variously known, is a staple of modern life. Copies by the billions are produced not only in the office but also on machines available to the public in libraries, copy shops, stationery stores, supermarkets, and a wide variety of other commercial facilities. Modern xerographic copiers, produced by a number of manufacturers, are available as desktop models suitable for the home as well as the small office. Many modern copiers reproduce in color as well as black and white, and office models can rival printing presses in speed of operation.

21. Photosensitive Detectors

Sensing radiation from ultraviolet to optical wavelengths and beyond is an important part of many devices. Whether analyzing the emission of radiation, chemical solutions, detecting lidar signals, fiber-optic communication systems, or imaging of medical ionizing radiation, detectors are the final link in any optoelectronic experiment or process.

Detectors fall into two groups: thermal detectors (where radiation is absorbed and the resulting temperature change is used to generate an electrical output) and photon (quantum) detectors. The operation of photon detectors is based on the photoelectric effect, in which the radiation is absorbed within a metal or semiconductor by direct interaction with electrons, which are excited to a higher energy level. Under the effect of an electric field these carriers move and produce a measurable electric current. The photon detectors show a selective wavelength-dependent response per unit incident radiation power.

22. Public and Private Lighting

At the turn of the 20th century, lighting was in a state of flux. In technical terms, a number of emerging lighting technologies jostled for economic dominance. In social terms, changing standards of illumination began to transform cities, the workplace, and the home. In design terms, the study of illumination as a science, as an engineering profession, and as an applied art was becoming firmly established. In the last decades of the 20th century, the technological and social choices in lighting attained considerable stability both technically and socially. Newer forms of compact fluorescent lighting, despite their greater efficiency, have not significantly replaced incandescent bulbs in homes owing to higher initial cost. Low-pressure sodium lamps, on the other hand, have been adopted increasingly for street and architectural lighting owing to lower replacement and maintenance costs. As with fluorescent lighting in the 1950s, recent lighting technologies have found niche markets rather than displacing incandescents, which have now been the dominant lighting system for well over a century.

23. Quantum Electronic Devices

Quantum theory, developed during the 1920s to explain the behavior of atoms and the absorption and emission of light, is thought to apply to every kind of physical system, from individual elementary particles to macroscopic systems such as lasers. In lasers, stimulated transitions between discrete or quantized energy levels is a quantum electronic phenomena (discussed in the entry Lasers, Theory and Operation). Stimulated transitions are also the central phenomena in atomic clocks. Semiconductor devices such as the transistor also rely on the arrangement of quantum energy levels into a valence band and a conduction band separated by an energy gap, but advanced quantum semiconductor devices were not possible until advances in fabrication techniques such as molecular beam epitaxy (MBE) developed in the 1960s made it possible to grow extremely pure single crystal semiconductor structures one atomic layer at a time.

In most electronic devices and integrated circuits, quantum phenomena such as quantum tunneling and electron diffraction—where electrons behave not as particles but as waves—are of no significance, since the device is much larger than the wavelength of the electron (around 100 nanometers, where one nanometer is 109 meters or about 4 atoms wide). Since the early 1980s however, researchers have been aware that as the overall device size of field effect transistors decreased, small-scale quantum mechanical effects between components, plus the limitations of materials and fabrication techniques, would sooner or later inhibit further reduction in the size of conventional semiconductor transistors. Thus to produce devices on ever-smaller integrated circuits (down to 25 nanometers in length), conventional microelectronic devices would have to be replaced with new device concepts that take advantage of the quantum mechanical effects that dominate on the nanometer scale, rather than function in despite of them. Such solid state ‘‘nanoelectronics’’ offers the potential for increased speed and density of information processing, but mass fabrication on this small scale presented formidable challenges at the end of the 20th century.

24. Quartz Clocks and Watches

The wristwatch and the domestic clock were completely reinvented with all-new electronic components beginning about 1960. In the new electronic timepieces, a tiny sliver of vibrating quartz in an electrical circuit provides the time base and replaces the traditional mechanical oscillator, the swinging pendulum in the clock or the balance wheel in the watch. Instead of an unwinding spring or a falling weight, batteries power these quartz clocks and watches, and integrated circuits substitute for intricate mechanical gear trains.

25. Radio-Frequency Electronics

Radio was originally conceived as a means for interpersonal communications, either person-toperson, or person-to-people, using analog waveforms containing either Morse code or actual sound. The use of radio frequencies (RF) designed to carry digital data in the form of binary code rather than voice and to replace physical wired connections between devices began in the 1970s, but the technology was not commercialized until the 1990s through digital cellular phone networks known as personal communications services (PCS) and an emerging group of wireless data network technologies just reaching commercial viability. The first of these is a so-called wireless personal area network (WPAN) technology known as Bluetooth. There are also two wireless local area networks (WLANs), generally grouped under the name Wi-Fi (wireless fidelity): (1) Wi-Fi, also known by its Institute of Electrical and Electronic Engineers (IEEE) designation 802.11b, and (2) Wi-Fi5 (802.11a).

26. Rectifiers

Rectifiers are electronic devices that are used to control the flow of current. They do this by having conducting and nonconducting states that depend on the polarity of the applied voltage. A major function in electronics is the conversion from alternating current (AC) to direct current (DC) where the output is only one-half (either positive or negative) of the input. Rectifiers that are currently, or have been, in use include: point-contact diodes, plate rectifiers, thermionic diodes, and semiconductor diodes. There are various ways in which rectifiers may be classified in terms of the signals they encounter; this contribution will consider two extremes—high frequency and heavy current—that make significantly different demands on device design.

27. Strobe Flashes

Scarcely a dozen years after photography was announced to the world in 1839, William Henry Fox Talbot produced the first known flash photograph. Talbot, the new art’s co-inventor, fastened a printed paper onto a disk, set it spinning as fast as possible, and then discharged a spark to expose a glass plate negative. The words on the paper could be read on the photograph. Talbot believed that the potential for combining electric sparks and photography was unlimited. In 1852, he pronounced, ‘‘It is in our power to obtain the pictures of all moving objects, no matter in how rapid motion they may be, provided we have the means of sufficiently illuminating them with a sudden electric flash.’’

The electronic stroboscope fulfills Talbot’s prediction. It is a repeating, short-duration light source used primarily for visual observation and photography of high-speed phenomena. The intensity of the light emitted from strobes also makes them useful as signal lights on communication towers, airport runways, emergency vehicles, and more. Though ‘‘stroboscope’’ actually refers to a repeating flash and ‘‘electronic flash’’ denotes a single burst, both types are commonly called ‘‘strobes.’’

28. Transistors

Early experiments in transistor technology were based on the analogy between the semiconductor and the vacuum tube: the ability to both amplify and effectively switch an electrical signal on or off (rectification). By 1940, Russell Ohl at Bell Telephone Laboratories, among others, had found that impure silicon had both positive (ptype material with holes) and negative (n-type) regions. When a junction is created between n-type material and p-type material, electrons on the ntype side are attracted across the junction to fill holes in the other layer. In this way, the n-type semiconductor becomes positively charged and the p-type becomes negatively charged. Holes move in the opposite direction, thus reinforcing the voltage built up at the junction. The key point is that current flows from one side to the other when a positive voltage is applied to the layers (‘‘forward biased’’).

29. Travelling Wave Tubes

One of the most important devices for the amplification of radio-frequency (RF) signals— which range in frequency from 3 kilohertz to 300 gigahertz—is the traveling wave tube (TWT). When matched with its power supply unit, or electronic power conditioner (EPC), the combination is known as a traveling wave tube amplifier (TWTA). The amplification of RF signals is important in many aspects of science and technology, since the ability to increase the strength of a very low-power input signal is fundamental to all types of long-range communications, radar and electronic warfare.

30. Vacuum Tubes/Valves

The vacuum tube has its roots in the late nineteenth century when Thomas A. Edison conducted experiments with electric bulbs in 1883. Edison’s light bulbs consisted of a conducting filament mounted in a glass bulb. Passing electricity through the filament caused it to heat up and radiate light. A vacuum in the tube prevented the filament from burning up. Edison noted that electric current would flow from the bulb filament to a positively charged metal plate inside the tube. This phenomenon, the one-way flow of current, was called the Edison Effect. Edison himself could not explain the filament’s behavior. He felt this effect was interesting but unimportant and patented it as a matter of course. It was only fifteen years later that Joseph John Thomson, a physics professor at the Cavendish Laboratory at the University of Cambridge in the U.K., discovered the electron and understood the significance of what was occurring in the tube. He identified the filament rays as a stream of particles, now called electrons. In a range of papers from 1901 to 1916, O.W. Richardson explained the electron behavior. Today the Edison Effect is known as thermionic emission.

History of Electronics

Electronics

Few of the basic tasks that electronic technologies perform, such as communication, computation, amplification, or automatic control, are unique to electronics. Most were anticipated by the designers of mechanical or electromechanical technologies in earlier years. What distinguishes electronic communication, computation, and control is often linked to the instantaneous action of the devices, the delicacy of their actions compared to mechanical systems, their high reliability, or their tiny size.

The electronics systems introduced between the late nineteenth century and the end of the twentieth century can be roughly divided into the applications related to communications (including telegraphy, telephony, broadcasting, and remote detection) and the more recently developed fields involving digital information and computation. In recent years these two fields have tended to converge, but it is still useful to consider them separately for a discussion of their history.

The origins of electronics as distinguished from other electrical technologies can be traced to 1880 and the work of Thomas Edison. While investigating the phenomenon of the blackening of the inside surface of electric light bulbs, Edison built an experimental bulb that included a third, unused wire in addition to the two wires supporting the filament. When the lamp was operating, Edison detected a flow of electricity from the filament to the third wire, through the evacuated space in the bulb. He was unable to explain the phenomenon, and although he thought it would be useful in telegraphy, he failed to commercialize it. It went unexplained for about 20 years, until the advent of wireless telegraphic transmission by radio waves. John Ambrose Fleming, an experimenter in radio, not only explained the Edison effect but used it to detect radio waves. Fleming’s ‘‘valve’’ as he called it, acted like a one-way valve for electric waves, and could be used in a circuit to convert radio waves to electric pulses so that that incoming Morse code signals could be heard through a sounder or earphone.

As in the case of the Fleming valve, many early electronic devices were used first in the field of communications, mainly to enhance existing forms of technology. Initially, for example, telephony (1870s) and radio (1890s) were accomplished using ordinary electrical and electromechanical circuits, but eventually both were transformed through the use of electronic devices. Many inventors in the late nineteenth century sought a functional telephone ‘‘relay’’; that is, something to refresh a degraded telephone signal to allow long distance telephony. Several people simultaneously recognized the possibility of developing a relay based on the Fleming valve. The American inventor Lee de Forest was one of the first to announce an electronic amplifier using a modified Fleming valve, which he called the Audion. While he initially saw it as a detector and amplifier of radio waves, its successful commercialization occurred first in the telephone industry. The sound quality and long-distance capability of telephony was enhanced and extended after the introduction of the first electronic amplifier circuits in 1907. In the U.S., where vast geographic distances separated the population, the American Telephone and Telegraph Company (AT&T) introduced improved vacuum tube amplifiers in 1913, which were later used to establish the first coast-to-coast telephone service in 1915 (an overland distance of nearly 5000 kilometers).

These vacuum tubes soon saw many other uses, such as a public-address systems constructed as early as 1920, and radio transmitters and receivers. The convergence of telephony and radio in the form of voice broadcasting was technically possible before the advent of electronics, but its application was greatly enhanced through the use of electronics both in the radio transmitter and in the receiver.

World War I saw the applications of electronics diversify somewhat to include military applications. Mostly, these were modifications of existing telegraph, telephone, and radio systems, but applications such as ground-to-air radio telephony were novel. The pressing need for large numbers of electronic components, especially vacuum tubes suitable for military use, stimulated changes in their design and manufacture and contributed to improving quality and falling prices. After the war, the expanded capacity of the vacuum tube industry contributed to a boom in low-cost consumer radio receivers. Yet because of the withdrawal of the military stimulus and the onset of the Great Depression, the pace of change slowed in the 1930s. One notable exception was in the field of television. Radio broadcasting became such a phenomenal commercial success that engineers and businessmen were envisioning how ‘‘pictures with sound’’ would replace ordinary broadcasting, even in the early 1930s. Germany, Great Britain, and the U.S. all had rudimentary television systems in place by 1939, although World War II would bring nearly a complete halt to these early TV broadcasts.

World War II saw another period of rapid change, this one much more dramatic than that of World War I. Not only were radio communications systems again greatly improved, but for the first time the field of electronics engineering came to encompass much more than communication. While it was the atomic bomb that is most commonly cited as the major technological outcome of World War II, radar should probably be called the weapon that won the war. To describe radar as a weapon is somewhat inaccurate, but there is no doubt that it had profound effects upon the way that naval, aerial, and ground combat was conducted. Using radio waves as a sort of searchlight, radar could act as an artificial eye capable of seeing through clouds or fog, over the horizon, or in the dark. Furthermore, it substituted for existing methods of calculating the distance and speed of targets. Radar’s success hinged on the development of new electronic components, particularly new kinds of vacuum tubes such as the klystron and magnetron, which were oriented toward the generation of microwaves. Subsidized by military agencies on both sides of the Atlantic (as well as Japan) during World War II, radar sets were eventually installed in aircraft and ships, used in ground stations, and even built into artillery shells. The remarkable engineering effort that was launched to make radar systems smaller, more energy efficient, and more reliable would mark the beginning of an international research program in electronics miniaturization that continues today. Radar technology also had many unexpected applications elsewhere, such as the use of microwave beams as a substitute for long-distance telephone cables. Microwave communication is also used extensively today for satellite-to-earth communication.

The second major outcome of electronics research during World War II was the effort to build an electronic computer. Mechanical adders and calculators were widely used in science, business, and government by the early twentieth century, and had reached an advanced state of design. Yet the problems peculiar to wartime, especially the rapid calculation of mountains of ballistics data, drove engineers to look for ways to speed up the machines. At the same time, some sought a calculator that could be reprogrammed as computational needs changed. While computers played a role in the war, it was not until the postwar period that they came into their own. In addition, computer research during World War II contributed little to the development of vacuum tubes, although in later years computer research would drive certain areas of semiconductor electron device research.

While the forces of the free market are not to be discounted, the role of the military in electronics development during World War II was of paramount importance. More-or-less continuous military support for research in electronic devices and systems persisted during the second half of the twentieth century too, and many more new technologies emerged from this effort. The sustained effort to develop more compact, rugged devices such as those demanded by military systems would converge with computer development during the 1950s, especially after the invention of the transistor in late 1947.

The transistor was not a product of the war, and in fact its development started in the 1930s and was delayed by the war effort. A transistor is simply a very small substitute for a vacuum tube, but beyond that it is an almost entirely new sort of device. At the time of its invention, its energy efficiency, reliability, and diminutive size suggested new possibilities for electronic systems. The most famous of these possibilities was related to computers and systems derived from or related to computers, such as robotics or industrial automation. The impetus for the transistor was a desire within the telephone industry to create an energy-efficient, reliable substitute for the vacuum tube. Once introduced, the military pressed hard to accelerate its development, as the need emerged for improved electronic navigational devices for aircraft and missiles.

There were many unanticipated results of the substitution of transistors for vacuum tubes. Because they were so energy efficient, transistors made it much more practical to design battery powered systems. The small transistor radio (known in some countries simply as ‘‘the transistor’’), introduced in the 1950s, is credited with helping to popularize rock and roll music. It is also worth noting that many developing countries could not easily provide broadcasting services until the diffusion of battery operated transistor receivers because of the lack of central station electric power. The use of the transistor also allowed designers to enhance existing automotive radios and tape players, contributing eventually to a greatly expanded culture of in-car listening. There were other important outcomes as well; transistor manufacture provided access to the global electronics market for Asian radio manufacturers, who improved manufacturing methods to undercut their U.S. competitors during the 1950s and 1960s. Further, the transistor’s high reliability nearly eliminated the profession of television and radio repair, which had supported tens of thousands of technicians in the U.S. alone before about 1980.

However, for all its remarkable features, the transistor also had its limitations; while it was an essential part of nearly every cutting-edge technology of the postwar period, it was easily outperformed by the older technology of vacuum tubes in some areas. The high-power microwave transmitting devices in communications satellites and spacecraft, for example, nearly all relied on special vacuum tubes through the end of the twentieth century, because of the physical limitations of semiconductor devices. For the most part, however, the transistor made the vacuum tube obsolete by about 1960.

The attention paid to the transistor in the 1950s and 1960s made the phrase ‘‘solid-state’’ familiar to the general public, and the new device spawned many new companies. However, its overall impact pales in comparison to its successor—the integrated circuit. Integrated circuits emerged in the late 1950s, were immediately adopted by the military for small computer and communications systems, and were then used in civilian computers and related applications from the 1960s. Integrated circuits consist of multiple transistors fabricated simultaneously from layers of semiconductor and other materials. The transistors, interconnecting ‘‘wires,’’ and many of the necessary circuit elements such as capacitors and resistors are fabricated on the ‘‘chip.’’ Such a circuit eliminates much of the laborious process of assembling an electronic system such as a computer by hand, and results in a much smaller product. The ability to miniaturize components through integrated circuit fabrication techniques would lead to circuits so vanishingly small that it became difficult to connect them to the systems of which they were a part. The plastic housings or ‘‘packages’’ containing today’s microprocessor chips measure just a few centimeters on a side, and yet the actual circuits inside are much smaller. Some of the most complex chips made today contain many millions of transistors, plus millions more solid-state resistors and other passive components.

While used extensively in military and aerospace applications, the integrated circuit became famous as a component in computer systems. The logic and memory circuits of digital computers, which have been the focus of much research, consist mainly of switching devices. Computers were first constructed in the 1930s with electromechanical relays as switching devices, then with vacuum tubes, transistors, and finally integrated circuits. Most early computers used off-the-shelf tubes and transistors, but with the advent of the integrated circuit, designers began to call for components designed especially for computers. It was clear to engineers at the time that all the circuits necessary to build a computer could be placed on one chip (or a small set of chips), and in fact, the desire to create a ‘‘computer on a chip’’ led to the microprocessor, introduced around 1970. The commercial impetus underlying later generations of computer chip design was not simply miniaturization (although there are important exceptions) or energy efficiency, but also the speed of operation, reliability, and lower cost. However, the inherent energy efficiency and small size of the resulting systems did enable the construction of smaller computers, and the incorporation of programmable controllers (special purpose computers) into a wide variety of other technologies. The recent merging of the computer (or computer-like systems) with so many other technologies makes it difficult to summarize the current status of digital electronic systems. As the twentieth century drew to a close, computer chips were widely in use in communications and entertainment devices, in industrial robots, in automobiles, in household appliances, in telephone calling cards, in traffic signals, and in a myriad other places. The rapid evolution of the computer during the last 50 years of the twentieth century was reflected by the near-meaninglessness of its name, which no longer adequately described its functions.

From an engineering perspective, not only did electronics begin to inhabit, in an almost symbiotic fashion, other technological systems after about 1950, but these electronics systems were increasingly dominated by the use of semiconductor technology. After virtually supplanting the vacuum tube in the 1950s, the semiconductor-based transistor became the technology of choice for most subsequent electronics development projects. Yet semiconducting alloys and compounds proved remarkably versatile in applications at first unrelated to transistors and chips. The laser, for example, was originally operated in a large vacuum chamber and depended on ionized gas for its operation. By the 1960s, laser research was focused on the remarkable ability of certain semiconducting materials to accomplish the same task as the ion chamber version. Today semiconductor devices are used not only as the basis of amplifiers and switches, but also for sensing light, heat, and pressure, for emitting light (as in lasers or video displays), for generating electricity (as in solar cells), and even for mechanical motion (as in micromechanical systems or MEMS).

However, semiconductor devices in ‘‘discrete’’ forms such as transistors, would probably not have had the remarkable impact of the integrated circuit. By the 1970s, when the manufacturing techniques for integrated circuits allowed high volume production, low cost, tiny size, relatively small energy needs, and enormous complexity; electronics entered a new phase of its history, having a chief characteristic of allowing electronic systems to be retrofitted into existing technologies. Low-cost microprocessors, for example, which were available from the late 1970s onward, were used to sense data from their environment, measure it, and use it to control various technological systems from coffee machines to video tape recorders. Even the human body is increasingly invaded by electronics; at the end of the twentieth century, several researchers announced the first microchips for implantation directly in the body. They were to be used to store information for retrieval by external sensors or to help deliver subcutaneous drugs. The integrated circuit has thus become part of innumerable technological and biological systems.

It is this remarkable flexibility of application that enabled designers of electronic systems to make electronics the defining technology of the late twentieth century, eclipsing both the mechanical technologies associated with the industrial revolution and the electrical and information technologies of the so-called second industrial revolution. While many in the post-World War II era once referred to an ‘‘atomic age,’’ it was in fact an era in which daily life was increasingly dominated by electronics.

Browse other Technology Research Paper Topics .

ORDER HIGH QUALITY CUSTOM PAPER

topics for research paper in electronics

  • Interesting
  • Scholarships
  • UGC-CARE Journals

Top 75 Emerging Research Topics in Electrical Engineering

Discover the cutting-edge frontiers of electrical engineering with our comprehensive list of the Top 75 Emerging Research Topics

ilovephd

In the ever-evolving realm of Electrical Engineering, innovative research continually drives the field’s progression, shaping our future technologies and solutions. As we step into an era dominated by AI, IoT, renewable energy, and more, the scope for innovative research widens. In this article, iLovePhD listed the top 75 emerging research topics in the field of Electrical Engineering.

1. Power Systems and Renewable Energy

1.1 smart grids and micro-grids.

a. Distributed control strategies for micro-grid management.

b. Blockchain applications for secure energy transactions in smart grids.

c. Resilience and robustness enhancement in smart grid systems against cyber threats.

d. Integration of renewable energy sources in micro-grids.

e. AI-based predictive maintenance for smart grid components.

1.2 Energy Harvesting and Storage

a. Next-gen battery technologies for energy storage systems.

b. Wireless power transfer and energy harvesting for IoT devices.

c. Super-capacitors and their applications in renewable energy storage.

d. Materials research for efficient energy conversion and storage.

e. Energy-efficient architectures for IoT devices powered by energy harvesting.

1.3 Electric Vehicles and Transportation

a. Charging infrastructure optimization for electric vehicles.

b. Vehicle-to-grid (V2G) technology and bidirectional power flow.

c. Lightweight materials and design for electric vehicle batteries.

d. Autonomous electric vehicle technology and its integration into smart cities.

e. Energy-efficient route planning algorithms for electric vehicles.

2. Communications and Networking

2.1 5g and beyond.

a. AI-driven optimization for 5G network deployment.

b. mmWave communication technologies and their implications.

c. Quantum communication for secure and high-speed data transfer.

d. 6G technology and its potential applications.

e. Edge computing and its role in 5G networks.

2.2 IoT and Wireless Sensor Networks

a. Energy-efficient protocols for IoT devices.

b. AI-enabled edge computing for IoT applications.

c. Security and privacy in IoT data transmission.

d. Integration of AI with IoT for intelligent decision-making.

e. Communication challenges in massive IoT deployment.

2.3 Satellite and Space Communications

a. Low Earth Orbit (LEO) satellite constellations for global connectivity.

b. Inter-satellite communication for improved space exploration.

c. Secure communication protocols for space-based systems.

d. Quantum communication for secure space-based networks.

e. Space debris mitigation and communication systems.

3. Control Systems and Robotics

3.1 autonomous systems.

a. AI-driven control for autonomous vehicles and drones.

b. Swarm robotics and their applications in various industries.

c. Human-robot collaboration in industrial settings.

d. Autonomous navigation systems for underwater vehicles.

e. Control strategies for multi-agent systems.

3.2 Biomedical and Healthcare Robotics

a. Robotics in surgical procedures and rehabilitation.

b. Wearable robotics for physical assistance and rehabilitation.

c. Robotic prosthetics and exoskeletons for enhanced mobility.

d. Telemedicine and remote healthcare using robotic systems.

e. Ethics and regulations in medical robotics.

3.3 Machine Learning and Control

a. Reinforcement learning for control system optimization.

b. Neural network-based adaptive control systems.

c. Explainable AI in control systems for better decision-making.

d. Control strategies for complex systems using deep learning.

e. Control system resilience against adversarial attacks.

4. Electronics and Nanotechnology

4.1 nano-electronics and quantum computing.

a. Quantum-resistant cryptography for future computing systems.

b. Development of reliable qubits for quantum computers.

c. Quantum error correction and fault-tolerant quantum computing.

d. Nano-scale transistors and their applications.

e. Hybrid quantum-classical computing architectures.

4.2 Flexible and Wearable Electronics

a. Stretchable electronics for wearable applications.

b. Smart textiles and their integration with electronic components.

c. Biocompatible electronics for healthcare monitoring.

d. Energy harvesting in wearable devices.

e. Novel materials for flexible electronic devices.

4.3 Neuromorphic Engineering and Brain-Computer Interfaces

a. Neuromorphic computing for AI and cognitive systems.

b. Brain-inspired computing architectures and algorithms.

c. Non-invasive brain-computer interfaces for diverse applications.

d. Ethics and privacy in brain-computer interface technology.

e. Neuroprosthetics and their integration with neural interfaces.

5. Signal Processing and Machine Learning

5.1 sparse signal processing.

a. Compressive sensing for efficient data acquisition.

b. Sparse signal reconstruction algorithms.

c. Sparse representations in machine learning.

d. Deep learning for sparse signal recovery.

e. Applications of sparse signal processing in various domains.

5.2 Explainable AI and Interpretability

a. Interpretable machine learning models for critical applications.

b. Explainable deep learning for decision-making.

c. Model-agnostic interpretability techniques.

d. Human-centric AI and its interpretability.

e. Visual and intuitive explanations in machine learning models.

5.3 Adversarial Machine Learning and Security

a. Robust deep learning models against adversarial attacks.

b. Adversarial machine learning in cybersecurity.

c. Detecting and mitigating adversarial attacks in AI systems.

d. Secure and private machine learning protocols.

e. Ethical considerations in adversarial machine learning.

As technology continues to redefine boundaries and explore new horizons, these research topics in Electrical Engineering stand at the forefront, ready to shape the future of our world. The amalgamation of these fields showcases the diversity and depth of possibilities waiting to be unlocked by the curious minds and diligent efforts of researchers and engineers in the years to come.

  • Advanced sensors
  • AI Applications
  • AI in robotics
  • Autonomous vehicles
  • Brain-machine interfaces
  • Cognitive radio
  • Electric vehicles
  • Electrical engineering research
  • Electroceuticals
  • Electromagnetic compatibility
  • Electronic design automation
  • Electronics advancements
  • Emerging research topics
  • Energy efficiency
  • Energy forecasting
  • Energy storage
  • Grid stability
  • Health technology
  • HVAC systems
  • IoT devices
  • Microgrid technology
  • Molecular electronics
  • Nanoelectronics
  • Power systems
  • quantum computing
  • Quantum cryptography
  • Quantum internet
  • Remote Sensing
  • renewable energy
  • Smart buildings
  • Smart grids
  • Smart grids cybersecurity
  • Speech and audio processing
  • sustainable manufacturing
  • Terahertz electronics
  • VLSI design
  • Wearable technology
  • Wireless protocols

ilovephd

List of PhD and Postdoc Fellowships in India 2024

24 best free plagiarism checkers in 2024, 10 ideas to get 10x more google scholar citations, most popular, 5 free data analysis and graph plotting software for thesis, the hrd scheme india 2024-25, 6 best online chemical drawing software 2024, imu-simons research fellowship program (2024-2027), india science and research fellowship (isrf) 2024-25, how to write a research paper in a month, example of abstract for research paper – tips and dos and donts, photopea tutorial – online free photo editor for thesis images, eight effective tips to overcome writer’s block in phd thesis writing, best for you, what is phd, popular posts, how to check scopus indexed journals 2024, how to write a research paper a complete guide, popular category.

  • POSTDOC 317
  • Interesting 258
  • Journals 234
  • Fellowship 130
  • Research Methodology 102
  • All Scopus Indexed Journals 92

ilovephd_logo

iLovePhD is a research education website to know updated research-related information. It helps researchers to find top journals for publishing research articles and get an easy manual for research tools. The main aim of this website is to help Ph.D. scholars who are working in various domains to get more valuable ideas to carry out their research. Learn the current groundbreaking research activities around the world, love the process of getting a Ph.D.

Contact us: [email protected]

Google News

Copyright © 2024 iLovePhD. All rights reserved

  • Artificial intelligence

topics for research paper in electronics

topics for research paper in electronics

  • PhD Topic Selection
  • Problem Identification
  • Research Proposal
  • Pilot Study
  • PhD. Dissertation (Full)
  • Ph.D. Dissertation (Part)
  • Phd-Consultation
  • PhD Coursework Abstract Writing Help
  • Interim-Report
  • Synopsis Preparation
  • Power Point
  • References Collection
  • Conceptual Framework
  • Theoretical Framework
  • Annotated Bibliography
  • Theorem Development
  • Gap Identification
  • Research Design
  • Sample Size
  • Power Calculation
  • Qualitative Methodology
  • Quantitative Methodology
  • Primary Data Collection
  • Secondary Data Collection
  • Quantitative Statistics
  • Textual / Content Analysis
  • Biostatistics
  • Econometrics
  • Big Data Analytics
  • Software Programming
  • Computer Programming
  • Translation
  • Transcription
  • Plagiarism Correction
  • Formatting & Referencing
  • Manuscript Rewriting
  • Manuscript Copyediting
  • Manuscript Peer Reviewing
  • Manuscript Statistics
  • PhD Manuscript Formatting Referencing
  • Manuscript Plagiarism Correction
  • Manuscript Editorial Comment Help
  • Conference & Seminar Paper
  • Writing for a journal
  • Academic Statistics
  • Journal Manuscript Writing
  • Research Methodology
  • PhD Animation Services
  • Academic Law Writing
  • Business & Management
  • Engineering & Technology
  • Arts & Humanities
  • Economics & Finance Academic
  • Biological & Life Science
  • Medicine & Healthcare
  • Computer Science & Information
  • HIRE A RESEARCH ASSISTANT

Research topics in electronics and electrical engineering

Electronics and electrical engineering are the studies of harnessing electricity and the electromagnetic spectrum to enhance the lives of human beings. It is exciting and futuristic to think about significant technological advancements and electronic technology breakthroughs like smart grid systems, electronic vehicles, sustainable power consumption, wireless wearables, robotics, artificial intelligence (AI), AR (Augmented Reality), VR (Virtual Reality), and the Industrial Internet of Things (IIoT). Advanced developments in technology for electronics research and development contribute to the efficient use of energy for our daily needs. PhD Assistance may assist you in selecting the latest topic for study in electronics and electrical engineering.

Here are some of the topic research topics in electronics and electrical engineering.

Electrical engineering topics include the following:

  • Study on the use of a modified PNN classifier with SMO optimization techniques for diagnosing the severity of skin cancer conditions
  • A study on battery integrated multiple input DC-DC boost converter
  • A study on the impact of Evaluation of compact fluorescent lights in a 50 Hz electrical network
  • A Systematic Evaluation of deep neural network-based dynamic modelling method for AC power electronic systems:
  • A Review of 2D van der Waals Devices Using Electronic Modulation of Semimetallic Electrode
  • A Study on frequency stability of hybrid industrial microgrids using optimal fractional sliding mode
  • Review on Latent Features of Neural Network Design for Power Electronic Systems Using Impedance Modelling
  • Understanding Effective Power Electronics Using Circuit Simulation
  • First-principles calculations of phosphorus-doped SnO2 transparent conducting oxide: Structural, electronic, and electrical properties
  • Adaptive position control of a brush-based DC motor
  • Implementation of an A-Source DC–DC Boost Combination Phase-Shifting Full-Bridge Converter for Electric Car Rapid Charging Applications
  • PM machines with high power and high speed.
  • Series connected super-capacitor and li-ion capacitor cells: active voltage equalisation.
  • Design choice in the direct drive in-wheel motors.
  • Reluctance Motors.
  • Nanoelectronics.
  • Atomic layer interface engineering.
  • Using photovoltaics, graphene, and silicon carbide.
  • Piezoelectrics and ferroelectrics.
  • Studying behaviour thru computational modelling.
  • Computation research in new technologies, materials.
  • Power electronics tools and equipment.
  • Electrical motors and their redesigning.
  • Energy networks and their mathematical foundations.
  • Computer-aided design for electrical engineering.
  • Smart grid monitoring.
  • Soft magnetic composites.
  • Electric vehicle motors and gearbox.
  • Distributed generation systems: loss detection of grid events via pattern identification.
  • Challenges of autonomous power systems.
  • Extra-functionality devices: advanced technology modelling.
  • Switched reluctance motors.
  • Electric vehicles and health monitoring of power semiconductor modules.
  • Cost Functions for Efficient Electrics Vehicle Drive Systems.
  • Wind Turbine Generators: 3D temperature mapping.
  • DFIG Machines: improving energy efficiencies.
  • Power electronics.
  • Drives and controls.
  • Power systems and energy storage.
  • Hybrid electric aerospace.
  • Renewable energy.
  • Advanced propulsion science.
  • Designing compressor motors.
  • Motor design for aerospace—fault tolerant.
  • Wind turbine energy technologies.
  • Diagnosing green growth in India.
  • HPVPS stages (high power virtual systems).
  • Top speed motors and their topologies.
  • Low cost effective trains.
  • Low-cost virtual systems.

Need Guidance on how the topic selection would be, check our topic selection examples !

Also, to get assistance on thesis topics in dissertation topics in microbiology, dissertation topics in English literature, interior design thesis topics, physiotherapy research topics, llm dissertation topics, sociology dissertation topics, criminal law dissertation topics, political science dissertation topics, dissertation topics in pediatrics, microbiology thesis topics, thesis topics in psychiatry, cardiology thesis topics, dissertation topics in education, dissertation topics for M.SC microbiology, dissertation topics in education, geography dissertation topics, interior design dissertation topics, pharmacology thesis topics, Avail our Ph.D topic selection support service today!

Need help with your Dissertation Service?

Take a look at topic selection service:

Click Here!

Quick Contact

Dissertation.

Student writing a dissertation on a laptop

Our Dissertation Writing service can help with everything from full dissertations to individual chapters.

Student writing a dissertation on a laptop

Literature Review

Student writing a dissertation on a laptop

Referencing Tools

  • Harvard Referencing Tool
  • Vancouver Referencing Tool
  • APA Referencing Tool

PhD Assistance

  • Privacy Overview
  • Strictly Necessary Cookies
  • 3rd Party Cookies

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.

Please enable Strictly Necessary Cookies first so that we can save your preferences!

digital electronics Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

Impact of Molecular Electrostatics on Field-Coupled Nanocomputing and Quantum-Dot Cellular Automata Circuits

The molecular Field-Coupled Nanocomputing (FCN) is a promising implementation of the Quantum-dot Cellular Automata (QCA) paradigm for future low-power digital electronics. However, most of the literature assumes all the QCA devices as possible molecular FCN devices, ignoring the molecular physics. Indeed, the electrostatic molecular characteristics play a relevant role in the interaction and consequently influence the functioning of the circuits. In this work, by considering three reference molecular species, namely neutral, oxidized, and zwitterionic, we analyze the fundamental devices, aiming to clarify how molecule physics impacts architectural behavior. We thus examine through energy analysis the fundamental cell-to-cell interactions involved in the layouts. Additionally, we simulate a set of circuits using two available simulators: SCERPA and QCADesigner. In fact, ignoring the molecular characteristics and assuming the molecules copying the QCA behavior lead to controversial molecular circuit proposals. This work demonstrates the importance of considering the molecular type during the design process, thus declaring the simulators working scope and facilitating the assessment of molecular FCN as a possible candidate for future digital electronics.

Digital electronics using dielectric elastomer structures as transistors

Prototype of the digital electronics chain for the gabriela detector assembly and first tests, inquiry-based learning used for implementation of bcd adders in the course "digital electronics", design and analysis of cntfet based vlsi interconnects by using pvt variation.

Abstract With the quick progress in the area of digital electronics results in miniaturization of semiconductor Industries. In Deep Sub Micron regime, because of leakage current, power consumption is turn out to be a major issue; hence constant efforts are being made by the researchers for investigating the various ways to minimize this. There are various methods available for the same and out of several available methods use of Carbon Nano-tube technology is a promising way to design low power circuits efficiently. Here new techniques are introduced for the reduction of leakage power. Here in this work, comparison of the main performance parameters of Copper on chip nano-interconnect with CNTFET has been done. We have measured the impact of ION and IOFF current by applying Process variation in CU and CNT- Interconnects with the variation of Tubes at 32nm technology and analysed the performance of the digital circuits with scaling of technology. The different kind of simulation outcomes indicates that by applying 10% of deviation from normal value in different device characteristics parameters such as Length of Gate (LTube) of the Tube, Width (WTube) of the Tube, Threshold Voltage (Vth) of the Tube, Thickness (tot) of Tube and Source & Drain Doping concentration with Cu and CNTFET interconnects for NFET and PFET with the variation of tubes from 1 to 16. All the experimental outcomes are achieved by using HSPICE simulator using SPICE model of CU and CNT at27oC temperature by using 32nm Berkley Predictive Technology module.

El software como apoyo didáctico en la enseñanza de la electrónica digital en la educación superior en México [Software as a didactic support in the teaching of digital electronics in higher education in Mexico]

La educación actual ha sufrido diversas modificaciones, sobre todo con la aparición del COVID-19 en el mundo. Entre las herramientas tecnológicas que apoyan la actividad didáctica, están los softwares educativos; éstos permiten la simulación de prácticas en laboratorios virtuales que complementan el aprendizaje y permiten demostrar principios teóricos. En el presente artículo se llevó a cabo un análisis documental sobre el uso del software en la electrónica digital, se elaboró un temario común de la materia electrónica digital de las licenciaturas que oferta el Tecnológico Nacional de México. Finalmente se llevó a cabo un análisis del uso del software determinado hacia la materia en cuestión y se estableció una relación que indica el nivel de adecuación de este. Current education has undergone various modifications, especially with the appearance of COVID-19 in the world. Among the technological tools that support the didactic activity is simulation software; These allow to carry out virtual laboratory practices that complement the learning and allow demonstrating theoretical principles. In this article, a documentary analysis was carried out on the use of software in digital electronics, a common agenda of digital electronic matter of the degrees offered by the Tecnológico Nacional de México was elaborated. Finally, an analysis of the use of the software determined towards the subject in question was carried out and a relationship was established that indicates the level of adequacy. Learning styles were identified in the group of surveyed students, and their relationship with the level of satisfaction and achievement of the software.

PROJECT-BASED LEARNING APPROACH USED FOR TEACHING AND LEARNING THE TOPIC “BCD ADDERS” IN THE COURSE “DIGITAL ELECTRONICS” DURING COVID-19 PANDEMIC

Active learning for teaching “synthesis and analysis of counters” in the course “digital electronics”, project-based learning approach applied in the course “digital electronics” for studying the topic “binary multipliers”, si-based mems resonant sensor: a review from microfabrication perspective.

With the technological advancement in micro-electro-mechanical systems (MEMS), microfabrication processes along with digital electronics together have opened novel avenues to the development of small-scale smart sensingdevices capable of improved sensitivity with a lower cost of fabrication and relatively small power consumption. This article aims to provide the overview of the recent work carried out on the fabrication methodologies adoptedto develop silicon based resonant sensors. A detailed discussion has been carried out to understand critical steps involved in the fabrication of the silicon-based MEMS resonator. Some challenges starting from the materialsselection to the ?final phase of obtaining a compact MEMS resonator device for its fabrication have also been explored critically.

Export Citation Format

Share document.

The Premier Place to Publish the Latest Research in Power Electronics

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Seventh Sense Research Group

Call for Paper - Upcoming Issues Upcoming Conferences 2024 -->

List of topics.

SSRG International Journal of Electronics and Communication Engineering (SSRG - IJECE) - is a journal that publishes articles that contribute new novel experimentation and theoretical work in all electronics and communication engineering and its applications. The journal welcomes publications of high-quality papers on theoretical developments and practical applications in Electronics and Communication.

  • Hybrid Renewable Energy and Energy Saving
  • Controllers, Drives and Machine Design
  • Fuzzy and Hybrid Optimization
  • Artificial Immune System
  • Conditional Monitoring and Instrumentation
  • Circuits and Devices
  • Communication and Information Processing
  • Electrical Engineering Communications
  • Electromagnetic and Microwave
  • Measurement and Testing
  • Nanoscience and Nanotechnology
  • Optics and Optoelectronics
  • Devices and Systems
  • Semiconductors
  • Systems and Control Engineering
  • Power Engineering
  • Power Transmission
  • Transmission Lines etc.

Any other topics relevant to latest trends in Electronics and Communication Engineering.

  • Privacy Policy

100+ Electrical Engineering Research Topics Examples

Electrical engineering comprises the comprehension of electricity and how it works. The main task of electrical engineers is to improve the distribution of energy to different electrical devices. Electrical engineers utilize their skills and knowledge to solve different technical issues. Electrical engineers’ tasks are working with the airline navigation system, GPS, systems for power generation, and transmissions like the wind farmhouses and similar projects. Working on different energies also comes in the domain of electrical engineers such as hydro-energy, turbine, fuel cell, gas, geothermal energy, solar energy, and wind energy. Electrical engineers use various passive components such as inductors, capacitors, and resistors, and so on while working on electrical devices and systems.

Students need to get different ideas for the research in electrical engineering on the latest ideas during the academic career of engineering. If you have been looking for an article that includes interesting  research paper topics for electrical engineering  students at a single site, you have come to the right place.

Top Research Topics for Electrical Engineering Students

For your convenience, we have compiled here a list of the top 100 electrical engineering project ideas in 2021.

  • Distance Locator for an underground cable fault
  • An analysis of battery energy storage (BES) systems financial incentive policies
  • Photovoltaic conversion efficiency improvement using the sparse matrix converter
  • Multiphase power and DC power transmission
  • SVPWM inverter harmonic elimination
  • Electric cars Regenerative braking efficiency improvement
  • UPS systems issues in power quality
  • Techno-environmental feasibility assessment of a standalone photovoltaic system
  • Electric Scooter Simulation model
  • Load-leveling economical analysis using EV
  • Energy minimization algorithm for an electric car with many motors
  • Minimization of Switching loss in the grid-connected system
  • Economic analysis and a battery’s life analysis with the supercapacitor
  • Protection System for an induction motor
  • A high-efficiency PLC boiler control system
  • SMART cities and IoT
  • Electric scooter Performance analysis using different motors
  • Semantics, knowledge management, and data acquisition using IoT
  • Technologies of Network virtualization
  • IoT home networks
  • Electrical Appliance Control with Android
  • The cost-benefit analysis of energy projects on grid-scale: A case study
  • Detection of the arcing fault in the electrical systems
  • Induction motor map development for efficiency
  • A sensitivity analysis for the parameters vehicle design
  • Research on electrical loads in the public and residential buildings
  • Comparative Analysis and Calculation Methods of the Losses in the electrical energy in low-voltage devices
  • Hybrid charging stations powered with solar energy
  • IoT smart energy meter
  • Wind-power generation using a synchronous generator with permanent magnet
  • Off-grid rural areas applications using a switched reluctance machine
  • Analysis and design of a magnetless multiphase dc-field machine to generate wind power
  • Smart home electric energy management
  • A techno-economic viability assessment of a decoupled energy storage
  • A techno-economic optimization and modeling of storage-based PV power generation systems
  • A technical model for the lithium-ion storage for biogas and PV energy system
  • An analysis of transparent power grids
  • Battery life and efficiency of regenerative braking
  • Economic and life analysis of a battery with the supercapacitor
  • EV home charging using the load-leveling algorithm
  • In-Vivo Imaging of the cancer cells using the Fluorescent Microscopy
  • Use of Dynamic Instrumentation for analyzing WhatsApp security
  • Smart grid architecture design
  • Use of PID controller for IM torque control
  • Design of a hybrid power system
  • Use of FIXCOM for designing a 3-level inverter
  • Harvesting solar energy from a solar-powered satellite
  • Use of microcontroller for battery discharging and charging of hybrid energy system
  • Analysis and modeling of electrical gripper’s DC motor actuator
  • Use of a brushless DC motor for Zeta converter’s power quality improvement
  • Use of a three-phase Inverter based on Thyristor for simulation and control of a DC motor
  • Use of PI Controller for designing a PLC speed control DC motor
  • Use of PID controller for speed control of a DC motor: a comparative study
  • Front-End ASICs power management circuits
  • Off-Grid renewable energy’s remote monitoring system
  • Non- Renewable and Renewable Energy Resources comparative analysis
  • Development of Green Building for harvesting renewable energy
  • Low carbon achievement: a case study
  • Use of PSO for load dispatch in case of renewable uncertainties
  • The hot climate and Vertical axis wind turbine relationship and consequence
  • Use of fuzzy control for efficient electrical energy management
  • Degradation in the performance of PV panel performance and shading effect: a case study
  • Solar angles simulation to maximize solar thermal collectors efficiency
  • Use of Node MCU for active solar tracking
  • Different techniques for DC networks with low voltage
  • Waste Management Approach based on information
  • Grid-Connected Solar PV System with decoupled control
  • Electric vehicle life analysis
  • Use of ADVISOR for minimizing EV energy consumption
  • Field data examination of energy consumption for an electric scooter
  • Use of an electric car for peak load shaving
  • Effect of the temperature on PV energy conversion
  • Digital Signal process control system for motors
  • Use of EMTDC/ PSCAD for evaluation of harmonic analysis and filter design
  • Load flow analysis of integrated DC/ AC power system using newton-raphson method
  • Auto-Irrigation System development using solar power
  • DC motor speed control unit design
  • Protection System design for under-voltage
  • Protection System design for over-voltage
  • Silicon robot based on solar power
  • 3-phase grid-connected PV systems simulation and design
  • Analysis of brushless servo motors
  • Grid-connected PV systems multilevel inverter simulation
  • MIMO transformer models
  • Fault detection in 3 phase transmission lines
  • An optimization technique for flexible load scheduling
  • Design of remote terminal unit for secure control of power
  • Use of the artificial neural network for 3-phase fault detection
  • Design of electrical substation earthing system
  • Microgrid integration in the power transmission lines
  • Induction motor temperature and material selection
  • Open-loop simulation for an optimal vehicle simulation and design
  • Use of STATCOM for improving the transient stability of a power grid
  • Peak load management using Vehicle to Grid system
  • Image sensing for a closed-loop traffic control system
  • Arduino based smart home automation system
  • 3 phase induction motor controlled by SVPWM in an electric vehicle
  • Increasing the efficiency of a superconducting transformer
  • An analysis of (SCADA) System in Power Stations

Research topics for electrical engineering can be exciting yet challenging to find at the same time as they require a lot of time for thorough research and writing. Moreover, the topic and the desired approach can a lot of time to be finalized. Keeping this hassle in view, we have compiled a list of the top 100  electrical engineering research paper topics  in a single article to save your time. We will also keep updating the list to include some more latest and fresh research topics related to electrical engineering.

Related Posts

Transform your space with timeless appeal of stained..., learn a new language with this new trending..., top safety measures for small vehicle owners on..., balancing free speech and user safety in the..., the ultimate guide to e-commerce website design, unable to work after an injury, securing fair treatment after workplace injuries, anton kreil – trading masterclass course: an over-review, the legal path: navigating road accident claims with..., these are the best chess openings for black, 10 comments.

Please example of research proposal Title solar about technology research 1

Solar tittle of research

Help us to connect the latest electrical engineering research topic

Please help to a research project about renewable energy

Your Comment technical report

I want two research papers in electrical engineering.

I will pay for that

Awesome 👍 How do the research topic on DC induction motors

Yes, sure do contact with me.

I want two research paper in electrical engineering

How do Hybrid charging stations powered with solar energy

Leave a Comment Cancel Reply

Please enter an answer in digits:

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, 113 great research paper topics.

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Follow us on Facebook (icon)

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”
  • Question Papers
  • Scholarships

1000+ Electronics Engineering Presentation Topics

These are 1000+ Presentation Topics for Electronics Engineering Students, Researchers, Teachers, and other professionals. Here we have given the latest and best electronics engineering presentation topics which can be used for PowerPoint paper presentations, seminars, webinars, oral or PPT presentations and discussions.

List of presentation topics for electronics engineering

These are the latest Presentation Topics for Electronics Engineering students.

Table of Contents

3G vs WiFi Wireless Internet Access

4G Wireless technology

5G Wireless technology

64-Point FT Chip

Air Powered Car

All-Optical Transistor

An Optical Switch Based on a Single Nano-Diamond

Artificial retina using thin-film transistor technology

Automatic solar tracker

Bio Battery

Brushless DC motor

Bubble Power

Carbon Nanotubes

Cellular Radio

Concentrating collectors

Detection and Tracking Algorithms for IRST

Digital Imaging

Drawing and Writing in Liquid With Light

DSP based motor control

E-Paper Technology

Electronics advance moves closer to a world beyond silicon

Electrooculography

Embedded system in automobiles

Embedded System Security

Fractal Robots

High-Speed Packet Access (HSPA)

How Advanced Solar Cells Work?

Humanoid Robot

IBOC (In-band on-channel)

Impedance Glottography

Integrated Circuits: The Dominator of Electronics

Is the electronics sector still waiting for the economy to recover?

Kirlian photography

Matrix inversion generator architecture

Microelectronic Pill

MIMO Technology

Mobile Phone Cloning

Money Pad Future Wallet

Nano-Optics

Nanomachines

New Techniques Produce Cleanest Graphene

The new way to dissolve semiconductors

Next-Generation Semiconductors Synthesis

Observer-Based Sensorless Control

Paper battery

Plastic Photovoltaics

Plastic Semiconductors

Riding an electron wave into the future of microchip fabrication

Smart antennas

Synaptic transistor

The power of wireless devices

Turning Plastic Bags Into High-Tech Materials

Use of DNA to assemble a graphene transistor

Wireless Communication technologies

Witricity (WIRELESS ELECTRICITY)

Wi-Vi technology

World’s Smallest FM Radio Transmitter

More Electronics Engg. Topics (Alphabetical List)

Here is the list of thousands of presentation ideas for presentations for electronics and telecommunication engineering students.

21st Century Electronic Devices

3 Axis Digital Accelerometer

3- D IC’s

3-D Chip Stacking Technique

3D Internet

3D optical Data Storage Technology

3D Solar Cell Technology

3-Dimensional Printing

3G Vs. 4G mobile Networks

5G Wireless Systems

6.5 digit professional multimeters

A 64 Point Fourier Transform Chip

A Basic Touch-Sensor Screen System

AC Performance of Nanoelectronics

Accident identification with auto dialler

Acoustic to articulatory inversion

Active pixel sensor

Adaptive Active Phased Array Radars

Adaptive Blind Noise Suppression

Adaptive Cruise Control

Adaptive Missile Guidance Using GPS

Adaptive Multipath Detection

Adaptive Optics in Ground-Based Telescopes

Adhoc Networks

Advanced electronic war equipment

Advanced Mobile Presence Technology

Advanced Packet Classification Technique

Advanced Plastics

Advances in DCS Systems

Advances in motion-capture technology

Advances in Thin-Film Technology

Advertising display using LED & LCD

AFM ultrafast Imaging

Agricultural Plant watering systems

AI for Speech Recognition

Air pollution monitor

All-flash microcontrollers

Aluminum Electrolytic Capacitors

Amplifiers: single-and multi-stage

An Efficient Algorithm for iris pattern

Analog Circuits

Analogue CMOS

Analog Gyros

Analog-Digital Hybrid Modulation

Analog-Digital Hybrid Modulation for improved efficiency over Broadband Wireless Systems

Analysis of electromechanical systems employing microcomputers

Animatronics

ANN for misuse detection

Antenna Effect in VLSI Designs

Anthropomorphic Robot hand: Gifu Hand II

Antiroll suspension system

Aperture Synthesis (SAR and ISAR)

Application-Specific IC’s (ASICS)

Applications of dual-axis Accelerometers

Applications of Fuel cells

Architectural requirements for a DSP processer

Articulatory synthesis

Artificial Eye

Artificial immune system.

Artificial intelligence for speech recognition

Artificial Intelligence In Power Station

Artificial Intelligence Substation Control

Artificial Neural Network Systems

Artificial neural networks

Aspheric lenses

Astrophotography

Asymmetric digital subscriber line

Asynchronous Chips

Asynchronous Transfer Mode

ATM with an eye

Augmented Reality

Automated eye-pattern recognition systems

Automated Optical Inspection

Automated Remote Data Logger

Automatic Electric billing system

Automatic Number Plate Recognition

Automatic Railway Gate Controller

Automatic taxi trip sensing and indication system through GSM

Automatic Teller Machine

Automotive Infotainment

Autonomous Underwater Vehicle

Avalanche diode

Avalanche photo diode

Baseband processor for licence-free digital PMR radios

Bench top wind tunnels

Bio Telemetry

Bioinformatics

Biologically inspired robots

Bio-metrics

Bio-Molecular Computing

Bioreactors

BIT for Intelligent system design

Blu Ray Disc

Blue Gene Supercomputer

Blue tooth technology

Bluetooth based smart sensor networks

Bluetooth Network Security

Boiler Instrumentation and Controls

Border Security Using Wireless Integrated Network Sensors

Brain Chips

Brain finger printing

Brain-computer interface

Brake Assisting Systems

Broadband Wireless Systems

Broadcasting as a Communication Primitive in Intercommunication Networks

Brushless Motors

Buffer overflow attack: A potential problem and its Implications

Business Process Execution Language (BPEC)

Capacitive Sensors

Carbon Chips

Carbon Nanotube Flow Sensors

Carbon Nanotubes -Adaptations & Applications

Cargo storage in space

Case Modeling

Cauchy’s and Euler’s equations

CCD vs. CMOS – Image

CCD: Charge-coupled device

CDMA & CDMA 1x Ev-Do

Cellonics Technology

Cellular Communications

Cellular Digital Packet Data

Cellular geolocation

Cellular Neural Network

Cellular Positioning

Cellular Technologies and Security

Cellular through Remote Control Switch

Chameleon Chip

Chip Morphing

Chip stacking Technology

Cholestric Flexible Displays(Ch LCDs)

Class-D Amplifier

Clockless Chips

Clos Architecture in OPS

Code Division Duplexing

Code Division Multiple Access

Collision warning system

Common Address Redundancy Protocol

Communication Onboard High-Speed Public Transport Systems

Compact peripheral component interconnect (CPCI)

Computational Optical Sensing and Imaging

Computer Aided Field Of Vision

Computer memory based on the protein

Concentrating Collectors

Contactless energy transfer system

Content-based image and video retrieval

Continuous phase modulation

Control system compensators

Convergence of Microcontrollers And DSPs

Co-operative cache based data access in ad hoc networks

Cordless power controller

Core Connecting Rod Design

Cortex M3 Micro controllers

Cross-media content production

CRT Display

Cruise Control Devices

Crusoe Processor

Cryptology in communication systems

Crystaline Silicon Solar Cells

CT Scanning

CVT: Continuously variable transmission

Cyberterrorism

Data Compression Techniques

Data Loggers

DD Using Bio-robotics

Deep-Submicron Effects and Challenges

Delay Tolerant Networking

Dense wavelength division multiplexing

Design of 2-D Filters using a Parallel Processor Architecture

Development of transistors

Digit recognition using neural network

Digital Audio Broadcasting

Digital Audio’s Final Frontier-Class D Amplifier

Digital Cinema

Digital circuits

Digital filtering techniques-Aliasing

Digital HUBBUB

Digital Micro-mirror Device

Digital quartz MEMS for stabilisation and motion sensing

Digital Signal Processing

Digital steganography

Digital stopwatch

Digital Subscriber Line

Digital Visual Interface

Direct Current Machines

Direct Hydrocarbons for Fuel Cells

Direct to Home Television (DTH)

Discrete-time Fourier Transform

Display technology

Disposable Nano Pumps

Distributed COM

Distributed Integrated Circuits

Distrubuated control System

DLNA: Digital Living Network Alliance Technology

DLP: Digital Light Processing

DNA Based Computing

Driving Optical Network Evolution

DSP Enhanced FPGA

DSP Processor

DTCP: Digital Transmission Content Protection

DTL (Diode–transistor logic)

Dual Energy X-ray Absorpiomsetry

DV Libraries and the Internet

Dynamic virtual private network

Dynamic VPN

Earth Simulator

Earthing transformers For Power systems

EC2 Technology

ECC: Elliptical curve cryptography

ECL (Emitter-coupled logic)

EDGE: Enhanced Data for GSM Evolution

EDRAM: Embedded Dynamic random-access memory

E-Intelligence

Elecromagnetic Valves

Electrical Impedance Tomography Or EIT

Electricity from the sun’s energy – photo-voltaic cells

Electro Dynamic Tether

Electromagnetics

Electronic Cooling and Thermal Issues in Microelectronics

Electronic Data Interchange

Electronic Devices

Electronic exchange& optical fiber network

Electronic humidity sensor

Electronic paper

Electronic Road Pricing System~

Electronic voting machine

Electronics Meet Animal Brains

Electronmagnetic Bomb

Element Management System

Embedded System in Automobiles

Embedded systems

Embedded Systems and Information Appliances

Embedded Systems In Automobiles

Embedded Web Technology

Embryonic approach towards integrated circuits

Embryonics Approach towards Integrated Circuits

Emergency Control of Power systems

Energy efficient turbo systems

Enhanced Data rates for Global Evolution

Enhanced data rates for gsm evolution (edge).

Environmental Remediation Systems

EPG: Electronic Program(me) Guide

EUV Lithography

Evolution Of Embedded System

Extended Markup Language

Extreme ultraviolet lithography

Eye Gaze Human-Computer Interface

Eye gaze systems

Fabrication of Si solar cells for concentrator applications

Face Recognition Technology

Face recognition using artificial neural networks.

Face Recognition Using Neural Network

Fast convergemce algorithms for active noise control in vehicles

Fault Diagnosis Of Electronic System using AI

FDDI: Fiber Distributed Data Interface

FED: field emission display

Femtotechnology

FFT: Fast Fourier transform

Field Emission Display Screens

Field-effect transistors

Field-programmable gate array

FinFET Technology

Finger print based library management system

First order equation (linear and nonlinear)

FLASH PIC micro Micro controllers

Flexible CRT Displays

Flexible Power Gateways

Flip Chip Technology

Floating gate Transistor

Fluid Focus Lens (18)

Fluorescent Multi-layer Disc

Flyash Utilisation

Fly-By-Wire technologies

Flying Robots

FM direction finder

FOC: Fibre Optic Communication

FPGA in Space

FPGA: Field Programmable Gate arrays Technology

Fractal Antennas

Fractal Image Compression

Fractal Robot

FRAM (Ferroelectric RAM)

Free space laser communication

Free Space Optics

Free-Core LVDT Position Sensors

Frequency Division Multiple Access

Fusion Memory

Fuzzy based Washing Machine

Fuzzy Logic

Gaic algorithm for iris comparison

Gas Transfer Systems

Gauss and Green’s theorems

General packet radio system

Genetic Programming

Glass computer memory for reduced cost of medical imaging

Global Positioning System

Global System for Mobiles

GNSS Augmentation Systems

Graphics processing unit

Grating Light Valve (GLV) Display Technology

Greenhouse Gas Control Technologies

GSM Based remote measurement of electricity and control system for home

GSM Security and Encryption

Guided Missiles

Hall Sensor Applications

Handheld Radiation detector

Harsh Environment LVDT Position Sensors

HART Communication

Harvesting Wave power

HBTs: Heterojunction Bipolar Transistors

Heliodisplay

HEMT Modeling and Fabrication

High Altitude Aeronautical Platforms

High Capacity Flash Chips

High-frequency RF design

High Performance Computing On Grid Databases

High Performance DSP Architectures

High Speed Packet Access HSPA

High-Speed Uplink Packet Access (HSUPA)(84)

High-speed USB chips

High-Temperature LVDT

High-availability power systems Redundancy options

Higher-order linear differential equations with constant coefficients

HIPPI (High-Performance Parallel Interface)

HMDI- New Digital Video Interface

Holographic Associative Memory

Holographic Data Storage

Holographic Memory

Holographic Versatile Disc (HVD)

Home Audio Video Interpretability (HAVi)

Home Networking

Homeplug – powerline communication

Hot Standby Routing Protocol (HSRP)

Hot Swapping

Humanoids Robotics

Human-Robot Interaction

Hydrogen Super Highway

Hydrophones

HY-Wire Cars

IBOC Technology

Illumination With Solid State Lighting (4)

Image Authentication Techniques

Image Coding Using Zero Tree Wavelet

Image compression

Image processing techniques in PCB inspection systems

Image Sensors

Imaging radar

Imbricate cryptology

Immersion Lithography

I-Mode (Information Mode)

Implementation of Zoom FFT in Ultrasonic Blood Flow Analysis

Improving Multi-Path Radio Reception

Indoor Geolocation

Infinite Dimensional Vector Space

IN-MOTION RADIOGRAPHY

Innovation at Bell Labs

Instruction detection system

Integer Fast Fourier Transform

Integrated Power Electronics Module

Integrated sensor systems, and radio-frequency systems

Integrated Vehicle Health Management Technology

Integrated Voice and Data

Intel express chipsets

Intelligent RAM (IRAM)

Intelligent Sensors

Intelligent transport

Intelligent Wireless Video Camera

Interactive Voice Response System

Interferometry

Intermediate band quantum dot solar cells

Internet Cryptography

Internet Protocol Television

Intervehicle Communication

Introduction to the Internet Protocols

Inverse Multiplexing over ATM

Ion Conductivity Of Solid Oxide Fuel Cell

Iontophoresis

IP Telephony

Ipv6 – The Next Generation Protocol

IR Tracking Robots

Iris Scanning

IRQ Numbers

ISO Loop magnetic couplers

Isolated PSE controller chipset

Jelly Filled Telephone Cables

Jet Stream windmill

Josephson junction

JTAG Boundary Scan

Junction transistors

Klystron tube

Landmine Detection Using Impulse Ground Penetrating Radar

Laplace transform

Laser communication systems

LCD screen harvests energy from indoor and outdoor light

LCOS Technology

LDMOS Technology

Led Wireless

Lenses of Liquid

Leo Satellite

LIDAR (LIght Detection And Ranging) for Automobile/ industrial/military applications

Light-emitting polymers

Lightning Protection Using LFAM

Linear lumped elements

Linear Time-Invariant (LTI)

Line-Reflect-Reflect Technique

Low Energy Efficient Wireless Communication Network Design

Low Memory Color Image Zero Tree Coding

Low Noise Amplifiers for Small & Large Photodiodes

Low Power UART Design for Serial Data Communication

Low Power Video Amplifiers

Low Power Wireless Sensor Network

Low Quiescent current regulators

Low Voltage Differential Signal

Low voltage differential signaling-Electronics

Low-density parity-check code

Lunar Reconnaissance Orbiter Miniature RF Technology Demonstration

LVDTs for proportional control valve applications

LVDTs for the Power Generation Industry

Magnetic Amplifiers

Magnetic Resonance Force Microscopy(MRFM)

Magnetic Resonance Imaging

Magnetoresistance on nanoscale

Maser Device

Mean value theorems

Media Oriented Systems Transport (MOST) Network

Membranes for Control and Energy Harvesting

MEMS CMOS processing

MEMS Microphone

Mesh Topology

Meso Technology

Metamorphic Robots

Microcontroller based Automatic Flush Control Systems

Microcontroller based security system using sonar

Micro-Display

Micro Electronic Pill

Micro Electronics

Micro Fluidic MEMS

Micro Mouse

Micro Robotics

Micro System Technology in Security Devices

Microbial Fuel Cells

Microcontroller based Auto-Dialer Home Security System

Microcontroller based sky car parking system

Microcontroller based talking key pad for blind people

Microcontroller based traffic density controller

Microcontroller based wireless energy meter

Microelectronic Pills

Micro-fabricated Bio-sensors

Micro fuel Cells

Micromechanical System For System-On-Chip Connectivity

Micro-mirror based projection displays

Microphotonics

Microvia Technology

Micro-wave Based Telecommunication

Microwave Superconductivity

MIFG(Multiple Input Floating Gate)

Migration to 4G: Advantages and Challenges

MiliPede Technology

Military Radars

MILSTD 1553B

Mixed-signal IC’s

MOBILE IPv6

Mobile Processor

Mobile Train Radio Communication

Mobile Virtual Reality Service

Modern Irrigation System Towards Fuzzy

Molecular Electronics

Molecular Fingerprinting

Molecular hinges

Molecular Surgery

Moletronics- an invisible technology

Molten oxide electrolysis

Money Pad, The Future Wallet

MOS (metal-oxide-semiconductor)

MOS capacitor

MOS field-effect transistors

MST in Telecommunication Networks

Multithreading microprocessors

Multichannel DC Convertors

Multimedia Messaging Service

Multiple description coding

Multiple integrals

Multisensor Fusion And Integration

Myword – ‘the text editor’

NAND Flash Memory

Nano Ring Memory

Nano-Communication

Nanocrystalline Thin-Film Si Solar Cells

Nanoimprint Lithography

Nanomanipulation

Nanopolymer Technology

Nanosensors from nature

Nanosized Resonator

Nanotechnological proposal of RBC

Nanotechnology

Nanotechnology Assembler Design

Nanotechnology for Future Electronics

Narrow Band & Broad Band ISDN

Navbelt and Guidicane

NCQ: Native Command Queuing

Near Field Communication

Neo -wafer 3d packaging.

Network Coding

Network on Chip

Neural Networks

Neuroprosthetics

New Applications For Carbon Nanotubes

New Generation Of Chips

New methods to power mobile phones

New Sensor Technology

New trends in Instrumentation

Next Generation Internet

Night Vision Technology

Non Visible Imaging

Nonlinear limits to the information capacity of optical fibre communications

NSAP: Network Service Access Point

Nuclear Batteries-Daintiest Dynamos

NVSRAM- Non-Volatile Static RAM

Object-Oriented Concepts

OCT: Optical Coherence Tomography

Optic Fibre Cable

Optical Burst Switching

Optical Camouflage

Optical Character Recognition

Optical Communications in Space

Optical Ethernet

Optical Integrated Circuits

Optical Mouse

Optical networking

Optical packet switch architectures

Optical Packet Switching Network

Optical Satellite Communication

Optical Switching

Optimization of the sorting architecture of rof

Organic Display

Organic Electronic Fibre

Organic LED

Organic Light Emitting Diode

Orthogonal Frequency Division Multiplexing

Ovonic Unified Memory

Oxygen User technology

PAC: Programmable Automation Controller

Packet Cable Network

Packet Switching chips

Palladium cryptography

Paper Battery

Passive InfraRed sensors (PIRs)

Passive Integration

Passive Millimeter-Wave

Passive Optical Sensors

PC – Based OSCILLOSCOPE

PCD: Protein-Coated Disc

Personal Area Network

Pervasive Computing

PH Control Technique using Fuzzy Logic

Photonic Chips

Photovoltaics

PID (Proportional-Integral-Derivative) control

Piezoelectric Actuators

p-I-n diode

Pivot Vector Space Approach in Audio-Video Mixing

Plasma antenna

Plasma Display

Plasma Television

Plastic circuitries

Plastic electronics

PMR ( Private Mobile Radio) Revolution

PolyBot – Modular, self-reconfigurable robots

Polycrystalline Si solar cells

Polymer memory

Polymer Memory

Polytronics

Porous Burner Technology

Portable X-ray Fluorescence Analyzer

Power Consumption Minimisation in Embedded Systems

Powerless Illumination

Power Line Networking

Power of Grid Computing

Power over Ethernet

Power System Contingencies

Power-supply ICs for slim LED-backlit TVs and PC main power systems

Precision IR thermometers

Printable RFID circuits

Printed Memory Technology

Printed organic Transistor

Project Oxygen

Proteomics Chips

Psychoacoustics

Push Technology

QoS in Cellular Networks Based on MPT

Quadrics network

Quantum Computers

Quantum cryptography

Quantum dot lasers

Quantum Dot Lasers

Quantum dots

Quantum Information Technology

Quantum Wires

QXGA – (Quad eXtended Graphics Array)

Radiation Hardened Chips (12)

Radio Astronomy

Radio Frequency Light Sources

Radio Network Controller

Real-Time Operating System (RTOS)-VxWorks

Real-Time Simulation Of Power Systems

Real-Time Speech Translation

Real Time System Interface

Real-Time Image Processing Applied To Traffic

Real-Time Obstacle Avoidance

Recent Advances in LED Technology

Remote Access Service

Remote Accessible Virtual Instrumentation Control Lab

Remote energy metering

Remote Monitoring And Thought Inference

Remotely Queried Embedded Microsensors

Residue theorem

Reversible Logic Circuits

RIFD: Radio Frequency Identification

Robot driven cars

Robotic balancing

Robotic Surgery

Role of Internet Technology in Future Mobile Data System

RPR: Resilient Packet Ring

RTOS – VxWorks(42)

Sampling theorems

Satellite Digital Radio(44)

Satellite Radio

Satellite Radio TV System

SCADA for power plant

SCADA system

Scalable Coherent Interconnect (SCI)

Screening for Toxic Nanoparticles

Search For Extraterrestrial Intelligence

Seasonal Influence on Safety of Substation Grounding

Secure Electronic Voting System Based on Image Steganography

Securing Underwater Wireless Communication Networks

Security In Embedded Systems

Self Healing Computers

Self Healing Spacecrafts

Self Phasing Antenna Array

Sensorless variable-speed controller for wind power generator(67)

Sensors on 3D Digitization

Sensotronic Brake Control

Serial Attached SCSI

Service Aware Intelligent GGSN

Short channel effects/ Latchup in CMOS

Signaling System

Significance of real-time transport Protocol in VOIP

Silicon on Plastic

Silicon Photonics

Silicon Technology

Silicon transistors

Silicon-carbide JFETs for high-end audio applications

Single Photon Emission Computed Tomography SPECT(59)

Slow Light For Optical Communications

Small Satellites

Smart Antenna

Smart Autoreeling mechanism

Smart Cameras in Embedded Systems

Smart Fabrics

Smart heat Technology in Soldering Stations

Smart Note Taker

Smart Pixel Arrays

Smart Quill

Smart rectifiers

Smartwire-DT communication system

SMF BAtteries

SMS based vehicle Ignition controlling system

SOFC, MCFC, Fuel cell performance models

Soft lithography

Software Radio

Software-Defined Radio

SOI Technology (Silicon On Insulation)

Solar Power Satellite

Solar-powered plane -Solar Impulse plane

Solid Electrolyte Dye-Sensitised Solar Cells

Solid-State Lighting

Solid-State RF Switches

Solid-state Viscosity

Souped-Up Mesh Networks

Sources of error in digital systems

Space Quantum Cryptology

Space Robotics

Space Shuttles and its Advancements

Speaking I-Pods

SPECT (Single-photon emission computed tomography)

Spectrum Pooling

Speech Compression – a novel method

Speech recognition: using dynamic time warping

Speed Detection of moving vehicle using speed cameras

Spin Valve Transistor

Spintronics

Spring-Loaded LVDT Position Sensors

STAP: Space-Time Adaptive Processing

Stealth Fighter

Stealth Radar

Steganography In Images

Stereoscopic Imaging

Storage Area Networks

Stream Processor

Super Capacitor

Superconductive Magnetic Energy Storage

Surface Mount Technology

Surface Plasmon Resonance

Surface-conduction Electron-emitter Display (SED)

Surge Protection In Modern Devices

Surround sound system

Swarm intelligence & traffic Safety

Synchronous Digital Hierarchy

Synchronous Optical Network

Synthetic Aperture Radar System

System on chip

Sziklai Pair (configuration of two bipolar transistors)

Tagged Command Queuing

Taylor’s and Laurent’ series

Tele-Graffiti

Tele-Medicine

Teleportation

Telestrator

Tempest and Echelon

Terahertz Transistor

Terahertz Waves And Applications

Terrestrial Trunked Radio

The Architecture of a Moletronics Computer

The Bionic Eye

The future of wireless network infrastructure

The InfraRed Traffic Logger

The making of quantum dots.

The mp3 standard.

The p-n junction

The speedes Qheap: a priority-queue data structure

The Synchronous optical network(SONET)

The Thought Translation Device (Ttd)

The TIGER SHARC Processor

The Ultra Battery

The Vanadium Redox Flow Battery System(35)

Theorems of integral calculus

Thermal Chips

Thermal infrared imaging technology

Thermography

Third Generation Solid State Drives

Three-dimensional integrated circuit.

Time Division Multiple Access

Time Reversal Terahertz imaging

Tiny Touch Screens

Token ring – IEEE 802.5

Tools and techniques for LTI control system analysis (root loci, Routh-Hurwitz criterion, Bode and

Nyquist plots)

Toroidal surface-mount power inductor for consumer electronics devices

Touch Screens

Tracking and positioning of mobiles in telecommunication

Transient Stability Assessment

Transistors and Moore’s law

Transparent Electronics

Transparent LCD displays

Treating Cardiac Disease With Catheter-Based Tissue Heating

Trends in appliance Motors

Trends in Mobiles & PC’s

Tri-Gate Transistor

Trisil – electronic component

TTL (Transistor–transistor logic)

Tunable lasers

Tunnel diode

Turbo codes

U3 Smart Technology

Ultra Conductors

Ultra-high frequency

Ultra Nano Crystalline Diamond

Ultra Small MCUs

Ultra Wide Band ( UWB)Sensors

Ultra-wideband technology

Ultra-Wideband

Ultrabright white SMD LEDs

Ultracapacitors

Ultrasonic Motor

Ultrasonic Trapping In Capillaries

Ultraviolet

Uniform linear array

Unijunction transistor

Unintentional radiator

Universal Asynchronous Receiver Transmitter

Unlicenced Moblie Access ( UMA) technology

USB Power Injector

User Identification Through Keystroke Biometrics

Utility Fog

UWB SENSORS: FOR EXCELLENT HOMELAND SECURITY

Vacuum Electronics For 21st Century(50)

Vacuum tube

Valence band

Vector field

Vehicle-to-Grid V2G

Vertical Cavity Surface Emission Lasers

VHSIC hardware description language

Vintage amateur radio

Virtual circuit

Virtual ground

Virtual Keyboards

Virtual Reality Visualisation

Virtual Retinal Display

Virtual retinal display (VRD) Technology

Virtual Router Redundancy Protocol (VRRP)

VIRTUAL SURGERY

Virtual worlds come to life

Visual Neuro Prosthetics

visual prosthetic

VLSI Computations

Voice morphing

Voice over internet protocol

Voice recognition based on artificial neural networks.

VT Architecture

VXI bus architecture

Wafer Level -Chip Size Packaging (WLCSP) Technology

Wardenclyffe Tower

Warner exemption

Wave impedance

Wave propagation

Waveguide antenna

Wavelength division multiplexing

Wavelength Division Multiplexing

Wavelet transforms

Wavelet Video Processing Technology

Wearable Biosensors

Wearable Technology innovations in Health care

Web-based home appliances controlling system

Web-based remote device monitoring

Web camera motion control

Welding Robots

Wheatstone bridge

Whip antenna

White facsimile transmission

White LED: The Future Lamp

WIDEBAND – OFDM

Wideband modem

Wideband Sigma Delta PLL Modulator

Williams tube

Wink pulsing

Wireless access point

Wireless Application Protocol

Wireless Charging Of Mobile Phones Using Microwaves

Wireless communication

Wireless community network

Wireless DSL

Wireless Fidelity

Wireless Integrated Network Sensors (WINS)

Wireless Intelligent Network

Wireless LAN Security

Wireless LED

Wireless Microserver

Wireless Mimo communication systems.

Wireless Networked Digital Devices

Wireless power transmission.

Wireless Video Service in CDMA Systems

Wisenet (Wireless Sensor Network)

Worldwide Interoperability for Microwave Access

XLR connector

Zener diode

Zero dBm transmission level point

Zero-dispersion wavelength

Zero-Energy Homes

ZIF (Zero insertion force)

Zigbee – zapping away wired worries(13)

Zigbee Networks(86)

Zipper noise elimination by the digital volume control

z-transform

This is all about Electronics engineering presentation topics for students, academicians and researchers.

Share with friends

  • Browse Works
  • Engineering

Electrical Electronics Engineering

Electrical electronics engineering research papers/topics, power quality improvement in solar fed cascaded multilevel inverter with output voltage regulation techniques.

Abstract: The presence of harmonics in solar Photo Voltaic (PV) energy conversion system results in deterioration of power quality. To address such issue, this paper aims to investigate the elimination of harmonics in a solar fed cascaded fifteen level inverter with aid of Proportional Integral (PI), Artificial Neural Network (ANN) and Fuzzy Logic (FL) based controllers. Unlike other techniques, the proposed FLC based approach helps in obtaining reduced harmonic distortions that intend to an...

Power System Analysis Project - Vedad Musovic

This paper presents a comprehensive analysis of power flow and fault scenarios in a complex power system configuration consisting of generators, transformers, transmission lines, buses, and loads. Utilizing MATLAB's Power System Analysis Toolbox (PSAT) and employing the Newton-Rhapson Method, power flow calculations were conducted to assess system performance under normal operating conditions. Subsequently, fault analyses, including Double Line-To-Ground Fault (DLG) and Three-Phase Fault (3φ...

Ion Thruster

This seminar paper delves into the realm of ion thrusters, which have become pivotal in driving forward space exploration amidst the growing space industry and humanity's wish to traverse the vast expanse of the solar system. It traces the evolution of ion thrusters from its beginnings to becoming the backbone of propulsion systems for deep-space missions. The paper focuses extensively on the working principles of ion thrusters, particularly the electromagnetic principles that govern their op...

Zinc oxide nanowire field effect transistor used as a pH sensor

Abstract: An ion sensitive field effect transistor can outperform conventional ion-selective electrodes. Thus, a zinc oxide (ZnO) nanowire field effect transistor (NWFET) pH sensor was fabricated and measured. The sensor contained a channel with 1.7×1018 cm-3 donor concentration and 100 ZnO nanowires in parallel, each with the following dimensions: 10 μm×120 nm×20 nm. The active channel is passivated with an 18 nm Al2O3 layer. The device was measured under a controlled environment with a...

Design and Construction of a 4 Way Inter-Communication System

ABSTRACT An intercom is a stand-alone voice communications system for use within a building or small collection of buildings, functioning independently of the public telephone network. Intercoms are generally mounted permanently in buildings and vehicles. Intercoms can incorporate connections to public address loudspeaker systems, walkie talkies, telephones. Four-way intercommunication system is nothing but the communication within four persons not close to one another. This does not mean w...

Prototype of Autonomous Vehicles Using Image Processing & Raspberry Pi

ABSTRACT An innovative approach to achieving autonomous vehicle navigation through the integration of image processing techniques and the Raspberry Pi platform. The aim is to develop a self-driving system that can analyze real-time images captured by onboard cameras and make informed decisions based on the detected objects and road conditions. By employing advanced computer vision algorithms, such as object detection and lane detection, the system can identify and tracking obstacles, recogniz...

Review of the Effects of Standard Deviation on Time and Frequency Response of Gaussian Filter

This research reviews the effects of a standard deviation on time response and frequency response of Gaussian filter. In the research, standard deviations of 0.5, 1, 1.5, 2, 2.5 and 3 were applied to normalized Gaussian filter in time domain and frequency domain. From the result of the simulation, it was observed that in the time domain, the peak amplitude of the filter increased with a decrease in the standard deviation and the execution time decreased with a decrease in standard deviation. ...

Review of the Implications of Uploading Unverified Dataset in A Data Banking Site (Case Study of Kaggle)

This review paper comprehensively detailed the methodologies involved in data analysis and theevaluation steps. It showed that steps and phases are the two main methodological parameters to be considered during data assessment for data of high qualities to be obtained.It is reviewed from this research that poor data quality is always caused by incompleteness, inconsistency, integrity and time-related dimensions and the four major factors that causes error in a dataset are duplication, commuta...

Qualitative Research

Qualitative research is concerned with feelings, ideas, or experiences. Finding insights that can result in testable hypotheses is the main goal of the data collection, which is frequently done in narrative form. During the exploratory phases of a study, educators use qualitative research to find patterns or fresh perspectives. A methodology called qualitative research is created to gather non-numerical data to produce insights. It is not statistical and is either semi-structured or unstructu...

Principals’ Administrative Strategies as Correlates of Teachers’ Job Performance in Public Secondary Schools in Obollo-Afor Education Zone of Enugu State, Nigeria

The study investigated principals’ administrative strategies as correlates of teachers’ job performance in public secondary schools in Obollo-Afor Education Zone of Enugu State. Four research questions and four null hypotheses guided the study. The study adopted a correlational survey design. The population of the study was 1,854 principals and teachers in 48 secondary schools in the Zone. A sample of 605 teachers was drawn using proportionate stratified random sampling technique. Qu...

Path Loss Model Predictions for Different Gsm Networks in the UNN Campus Environment for Estimation of Propagation loss

Different path loss models have been predicted for different locations. Nevertheless, none of these models can be regarded as a superior model, because environmental factors play a vital role in the path loss of every environment. In this paper, signal attenuation prediction models for Global System for Mobile Communication (GSM) networks in the University of Nigeria, Nsukka for four different networks namely Airtel, Globacom, Mobile Telecommunication Network (MTN), and 9mobile networks w...

Optimum Silver contact Sputtering parameters for efficient Perovskite Solar Cell Fabrication

The use of magnetron sputtering for deposition of the metal electrode in perovskite solar cells has been limited because of the damage to the organic hole transport layer by high kinetic energy particles during the sputtering process. In this paper, a systematic investigation into the effect of sputtering power, argon flow rate, sputtering duration, and argon pressure on the performance of the perovskite cells was conducted. The results of this work show that high power conversion efficie...

Novel Passive Negative and Positive Clamper Circuits Design for Electronic Systems

In this paper, models for negative and positive clamper circuits were developed. The models developed were simulated and data collected. Simulation results obtained showed that series capacitance needed to design negative clamper circuit was directly proportional to the duty cycle and period of the input signal. Considering the positive clamper circuit, the series capacitance is inversely proportional to the duty cycle and directly proportional to the period of the input signal. Looking at th...

Maximum power point tracking based on differential conductance

Maximum power point (MPP) tracking technique based an optimized adaptive differential conductance technique was developed in this paper. The performance of the algorithm developed in this paper was evaluated at solar irradiance of 1,000, 800 and 600 W/m2 and at temperature of 298, 328 and 358 K. From the simulation results, it was observed that the impedance of the panel decreases as the irradiance increases while the impedance of the load is not affected by the irradiance. This technique was...

Improving the Efficiency and Stability of in air Fabricated Perovskite Solar Cells Using the Mixed Antisolvent of Methyl Acetate and Chloroform

Antisolvents play a significant role in obtaining high-quality perovskite films during the fabrication process. This paper reports a novel mixture of two antisolvents (methyl acetate and chloroform) that proves effective for fabricating high-quality perovskite films in a high humidity ambient. The results show that the use of methyl acetate alone as the antisolvent enables the fabrication of dense perovskite films (MAPbI3) in a high humidity ambient, but with a rough surface, while mixing...

Projects, thesis, seminars, research papers, termpapers topics in Electrical Electronics ENgineering. Electrical Electronics engineering projects, thesis, seminars and termpapers topic and materials

Popular Papers/Topics

Design and construction of an automatic changeover switch, construction of a 12v battery charger, design and construction of a d.c to a.c inverter system, construction of an fm transmitter, design and construction of public address system, design and construction of an audio amplifier, design and construction of uninterruptible power supply, construction of pvs conduit wiring system of two bedroom bungalow, design and construction of an electronic attendance staff register (ear)., construction and design of a 6v rechargeable lamp, scope and limitation of electronic voting system, design and construction of electric oven, design and construction of automatic phase selector, construction of a 12 volt battery charger, design and construction of 20 watts wireless public address system.

Privacy Policy | Refund Policy | Terms | Copyright | © 2024, Afribary Limited. All rights reserved.

  • All Electronics Projects
  • Premium DIY Electronics Projects
  • Community Projects
  • NEW | DIY Webinars
  • Submit Your Project
  • Mini Projects
  • College Projects
  • Advanced Projects
  • AI/ML Projects
  • Reference Designs
  • S/W Projects
  • Tech Trends
  • Tech updates
  • Aerospace & Defence
  • Communication & Networks
  • Energy & Power
  • LEDs & Lighting
  • Testing Times
  • Thought Leaders
  • Industry Powered Content
  • NEW @ Electronicsforu.com
  • New Products
  • Innovative Components
  • Components Corner
  • Tech Updates
  • Press Releases
  • Electronics Calculators
  • NEW | Events
  • Premium Content
  • Startup Contests
  • Design Contests
  • Explore Components on DigiKey

Logo

Seminar Topics For Electronics Students & Professionals

This list contains short-listed top Seminar topics and guides that an Electronics Engineering Student or Professional can use to present in various Seminars, white Paper Presentations, and institutes.

The list with brief introductions provides an overview of each seminar topic and offers a glimpse into the areas of exploration and discussion within the field of electronics.

1. Internet of Things (IoT) in Electronics

This topic explores the integration of IoT technology with electronic systems and devices, enabling connectivity, data exchange, and automation. It covers the potential applications, benefits, and challenges associated with implementing IoT in the electronics industry.

You can also check top IoT Projects and Ideas .

2. Artificial Intelligence in Electronics Design and Manufacturing

This topic focuses on the use of artificial intelligence (AI) techniques in electronics design and manufacturing processes. It discusses how AI algorithms and machine learning can optimize design, enhance productivity, and improve quality control in the electronics industry.

3. Embedded Systems and Real-time Operating Systems (RTOS)

This topic delves into embedded systems, which are specialized computer systems designed to perform specific tasks. It covers the fundamentals of embedded systems, the role of real-time operating systems, and their applications in various electronic devices and industries.

4. Nanoelectronics and Nanotechnology in Electronics

This topic highlights the significance of nanotechnology in electronics. It explores nanoscale materials, devices, and manufacturing techniques that contribute to the development of smaller, faster, and more efficient electronic components.

5. Robotics and Automation in Electronics Industry

This topic focuses on the use of robotics and automation in the electronics industry. It discusses industrial robots, automated assembly lines, and the role of robotics in manufacturing, quality control, and process optimization in electronics production.

6. Microstrip Antenna

Microstrip antenna is one of the most popular types of printed antenna. These play a very significant role in today’s wireless communication systems. In this article, we have explained microstrip antenna, their polarisation and radiation pattern, applications, and upcoming trends.

7. Harvesting Radio Frequency Energy

Antennae are constantly transmitting energy around us. What if there was a way of harvesting radio frequency energy that is being transmitted constantly?

8. Solar-Powered Irrigation Systems

Solar-powered water pumping systems can find application in town water supply, livestock watering, and irrigation. The solar-powered irrigation system is an application of a solar-powered water pumping system used in paddy fields, and gardens for watering plants, vegetables, etc.

9. RFID Technology

RFID technology allows the non-contact transfer of information (much like the familiar barcode), making it effective in manufacturing and other hostile environments where barcode labels could not survive. Take a look at how it works and what are its pros and cons.

Transition to 5G mobile communications is expected to include offloading traffic to unlicensed spectrum, improved carrier aggregation (up to 32 carriers), massive MIMO, and support for a radio optimized for the low-end of the IoT market.

Light Fidelity is a light-based Wi-Fi that can transmit data more swiftly, safely, and securely, thereby holding immense potential for multiple domains.

12. 7nm IC Technology

Commercial production of 7 nm IC technology is still at a development stage even after being developed in early 2000. What are the challenges involved?

13. Frequency Spectrum Analysis

How does a frequency spectrum analysis take place? What are the parameters to consider while performing it? Check it out now.

14. Watchdog Timer

A Watchdog Timer (WDT) is a hardware that contains a timing device and clock source. A timing device is a free-running timer, which is set to a certain value that gets decremented continuously. Let us know more about it.

15. E-waste Management

The aim of this article is to spread awareness about various issues involved in e-waste management and generation, particularly from an Indian perspective.

16. Hall Effect Sensors

Hall effect sensors were first used as microwave power sensors. These now pervade everything from automobiles to computers to machine tools. Take a peek into the different types of Hall effect sensors.

17. Biomedical Sensors

Sensors are small, tiny, and intelligent devices that are used to measure physical variables like temperature, humidity, gas, velocity, flow rate, pressure, and so on. According to American National Standards Institute, a sensor is defined as a device that provides a usable output in response to a specified measure.

18. Microchip Implants

The RFID microchip is basically a tiny, two-way radio, roughly the size of a grain of rice, capable of storing digital information. The sub-dermal implant typically contains a unique 16-digit identification number that can be linked to the information contained in an external database, such as personal identification, law enforcement, medical history, medications, allergies, and contact information.

19. E-Textiles

e-textiles are an important part of wearable computing. Also called ‘e-fabrics,’ these have various electronic components and interconnections woven into them for the desired functionality. Here is an overview of their design, usage, and areas of research.

20. Assistive Electronics

Electronic devices have not only transformed the lifestyle of common people by providing comfort, security, and entertainment but have proved a boon for people with injuries or physical disabilities. This type of electronics is generally called assistive electronics.

21. DWDM Technology

Dense wavelength division multiplexing (DWDM) is a promising transmission technology that can offer very high bandwidth capabilities in the range of terahertz. Such capabilities are possible due to the transmission of a large number of high-speed channels simultaneously.

22. Wireless Charging Technology

With the widespread adoption of small, portable devices with batteries in need of constant recharging, people’s attention is turning to wireless power. Let us read more about wireless charging technology.

23. High-power Microwaves

HPM weapon systems could be used to replace precision-guided munitions to disable or destroy high-value targets or installations located in populated areas with minimized risk of human casualties.

24. FPGA Design Flow

A step-by-step lowdown on the basic flow of FPGA designing for new design engineers.

25. Conformal Coating

Coating materials protect electronic assemblies against malfunctions or failures in robust operating conditions. Here is what kind of protection these materials provide, the properties of coating materials, and why they are in demand.

26. Wireless Power Transfer and Energy Harvesting Technologies

This topic explores wireless power transfer methods, including technologies like inductive coupling and resonant coupling. It also covers energy harvesting techniques that enable the collection and utilization of ambient energy sources to power electronic devices wirelessly.

27. Printed Electronics and Flexible Electronics

This topic introduces printed electronics, a branch of electronics that focuses on printing electronic components and circuits on flexible substrates. It discusses the advantages, applications, and advancements in the field of flexible and printed electronics.

28. Emerging Trends in Digital Signal Processing (DSP)

This topic discusses the latest trends and advancements in digital signal processing, a key technology for processing and analyzing signals in electronic systems. It covers topics such as digital filters, image and audio processing, and real-time signal processing applications.

Please check the signal processing basics and Digital Signal Processing Free Ebooks .

Electronics For You

Network Consists of Further Focused Websites (Channels)

electronicsforu

Inspired by our flagship publication

Electronics for you.

Magazine

  • Sample For Free
  • Subscribe For Print
  • Subscribe For Ezine

CHECKED OUT EFY EXPRESS?

Magazine

  • READ E-ZINE

© Copyright 2024 - EFY Group

topics for research paper in electronics

Broadband Internet Access, Economic Growth, and Wellbeing

Between 2000 and 2008, access to high-speed, broadband internet grew significantly in the United States, but there is debate on whether access to high-speed internet improves or harms wellbeing. We find that a ten percent increase in the proportion of county residents with access to broadband internet leads to a 1.01 percent reduction in the number of suicides in a county, as well as improvements in self-reported mental and physical health. We further find that this reduction in suicide deaths is likely due to economic improvements in counties that have access to broadband internet. Counties with increased access to broadband internet see reductions in poverty rate and unemployment rate. In addition, zip codes that gain access to broadband internet see increases in the numbers of employees and establishments. In addition, heterogeneity analysis indicates that the positive effects are concentrated in the working age population, those between 25 and 64 years old. This pattern is precisely what is predicted by the literature linking economic conditions to suicide risk.

We are grateful to participants at the Association of Public Policy and Management and the Washington Area Labor Symposium conferences for their helpful comments. Any errors or conclusions are our own. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

Mentioned in the News

More from nber.

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

Suggestions or feedback?

MIT News | Massachusetts Institute of Technology

  • Machine learning
  • Social justice
  • Black holes
  • Classes and programs

Departments

  • Aeronautics and Astronautics
  • Brain and Cognitive Sciences
  • Architecture
  • Political Science
  • Mechanical Engineering

Centers, Labs, & Programs

  • Abdul Latif Jameel Poverty Action Lab (J-PAL)
  • Picower Institute for Learning and Memory
  • Lincoln Laboratory
  • School of Architecture + Planning
  • School of Engineering
  • School of Humanities, Arts, and Social Sciences
  • Sloan School of Management
  • School of Science
  • MIT Schwarzman College of Computing

Study models how ketamine’s molecular action leads to its effects on the brain

Press contact :.

A clear drug vial with a syringe on a white background, seen from above

Previous image Next image

Ketamine, a World Health Organization Essential Medicine, is widely used at varying doses for sedation, pain control, general anesthesia, and as a therapy for treatment-resistant depression. While scientists know its target in brain cells and have observed how it affects brain-wide activity, they haven’t known entirely how the two are connected. A new study by a research team spanning four Boston-area institutions uses computational modeling of previously unappreciated physiological details to fill that gap and offer new insights into how ketamine works.

“This modeling work has helped decipher likely mechanisms through which ketamine produces altered arousal states as well as its therapeutic benefits for treating depression,” says co-senior author Emery N. Brown , the Edward Hood Taplin Professor of Computational Neuroscience and Medical Engineering at The Picower Institute for Learning and Memory at MIT, as well as an anesthesiologist at Massachusetts General Hospital and a professor at Harvard Medical School.

The researchers from MIT, Boston University (BU), MGH, and Harvard University say the predictions of their model, published May 20 in Proceedings of the National Academy of Sciences , could help physicians make better use of the drug.

“When physicians understand what's mechanistically happening when they administer a drug, they can possibly leverage that mechanism and manipulate it,” says study lead author Elie Adam , a research scientist at MIT who will soon join the Harvard Medical School faculty and launch a lab at MGH. “They gain a sense of how to enhance the good effects of the drug and how to mitigate the bad ones.”

Blocking the door

The core advance of the study involved biophysically modeling what happens when ketamine blocks the “NMDA” receptors in the brain’s cortex — the outer layer where key functions such as sensory processing and cognition take place. Blocking the NMDA receptors modulates the release of excitatory neurotransmitter glutamate.

When the neuronal channels (or doorways) regulated by the NMDA receptors open, they typically close slowly (like a doorway with a hydraulic closer that keeps it from slamming), allowing ions to go in and out of neurons, thereby regulating their electrical properties, Adam says. But, the channels of the receptor can be blocked by a molecule. Blocking by magnesium helps to naturally regulate ion flow. Ketamine, however, is an especially effective blocker.

Blocking slows the voltage build-up across the neuron’s membrane that eventually leads a neuron to “spike,” or send an electrochemical message to other neurons. The NMDA doorway becomes unblocked when the voltage gets high. This interdependence between voltage, spiking, and blocking can equip NMDA receptors with faster activity than its slow closing speed might suggest. The team’s model goes further than ones before by representing how ketamine’s blocking and unblocking affect neural activity.

“Physiological details that are usually ignored can sometimes be central to understanding cognitive phenomena,” says co-corresponding author Nancy Kopell , a professor of mathematics at BU. “The dynamics of NMDA receptors have more impact on network dynamics than has previously been appreciated.”

With their model, the scientists simulated how different doses of ketamine affecting NMDA receptors would alter the activity of a model brain network. The simulated network included key neuron types found in the cortex: one excitatory type and two inhibitory types. It distinguishes between “tonic” interneurons that tamp down network activity and “phasic” interneurons that react more to excitatory neurons.

The team’s simulations successfully recapitulated the real brain waves that have been measured via EEG electrodes on the scalp of a human volunteer who received various ketamine doses and the neural spiking that has been measured in similarly treated animals that had implanted electrode arrays. At low doses, ketamine increased brain wave power in the fast gamma frequency range (30-40 Hz). At the higher doses that cause unconsciousness, those gamma waves became periodically interrupted by “down” states where only very slow frequency delta waves occur. This repeated disruption of the higher frequency waves is what can disrupt communication across the cortex enough to disrupt consciousness.

A very horizontal chart plots brain rhythm frequency over time with colors indicating power. Bars along the top indicate the dose of ketamine. After the dose starts more gamma frequency power appears. After the dose gets even higher, the gamma waves periodically stop and then resume.

Previous item Next item

But how? Key findings

Importantly, through simulations, they explained several key mechanisms in the network that would produce exactly these dynamics.

The first prediction is that ketamine can disinhibit network activity by shutting down certain inhibitory interneurons. The modeling shows that natural blocking and unblocking kinetics of NMDA-receptors can let in a small current when neurons are not spiking. Many neurons in the network that are at the right level of excitation would rely on this current to spontaneously spike. But when ketamine impairs the kinetics of the NMDA receptors, it quenches that current, leaving these neurons suppressed. In the model, while ketamine equally impairs all neurons, it is the tonic inhibitory neurons that get shut down because they happen to be at that level of excitation. This releases other neurons, excitatory or inhibitory, from their inhibition allowing them to spike vigorously and leading to ketamine’s excited brain state. The network’s increased excitation can then enable quick unblocking (and reblocking) of the neurons’ NMDA receptors, causing bursts of spiking.

Another prediction is that these bursts become synchronized into the gamma frequency waves seen with ketamine. How? The team found that the phasic inhibitory interneurons become stimulated by lots of input of the neurotransmitter glutamate from the excitatory neurons and vigorously spike, or fire. When they do, they send an inhibitory signal of the neurotransmitter GABA to the excitatory neurons that squelches the excitatory firing, almost like a kindergarten teacher calming down a whole classroom of excited children. That stop signal, which reaches all the excitatory neurons simultaneously, only lasts so long, ends up synchronizing their activity, producing a coordinated gamma brain wave.

A network schematic shows the model arrangement of three different types of neurons in a cortical circuit.

“The finding that an individual synaptic receptor (NMDA) can produce gamma oscillations and that these gamma oscillations can influence network-level gamma was unexpected,” says co-corresponding author Michelle McCarthy , a research assistant professor of math at BU. “This was found only by using a detailed physiological model of the NMDA receptor. This level of physiological detail revealed a gamma time scale not usually associated with an NMDA receptor.”

So what about the periodic down states that emerge at higher, unconsciousness-inducing ketamine doses? In the simulation, the gamma-frequency activity of the excitatory neurons can’t be sustained for too long by the impaired NMDA-receptor kinetics. The excitatory neurons essentially become exhausted under GABA inhibition from the phasic interneurons. That produces the down state. But then, after they have stopped sending glutamate to the phasic interneurons, those cells stop producing their inhibitory GABA signals. That enables the excitatory neurons to recover, starting a cycle anew.

Antidepressant connection?

The model makes another prediction that might help explain how ketamine exerts its antidepressant effects. It suggests that the increased gamma activity of ketamine could entrain gamma activity among neurons expressing a peptide called VIP. This peptide has been found to have health-promoting effects, such as reducing inflammation, that last much longer than ketamine’s effects on NMDA receptors. The research team proposes that the entrainment of these neurons under ketamine could increase the release of the beneficial peptide, as observed when these cells are stimulated in experiments. This also hints at therapeutic features of ketamine that may go beyond antidepressant effects. The research team acknowledges, however, that this connection is speculative and awaits specific experimental validation.

“The understanding that the subcellular details of the NMDA receptor can lead to increased gamma oscillations was the basis for a new theory about how ketamine may work for treating depression,” Kopell says.

Additional co-authors of the study are Marek Kowalski, Oluwaseun Akeju, and Earl K. Miller.

The work was supported by the JPB Foundation; The Picower Institute for Learning and Memory; The Simons Center for The Social Brain; the National Institutes of Health; George J. Elbaum ’59, SM ’63, PhD ’67; Mimi Jensen; Diane B. Greene SM ’78; Mendel Rosenblum; Bill Swanson; and annual donors to the Anesthesia Initiative Fund.

Share this news article on:

Related links.

  • Institute for Medical Engineering and Science
  • The Picower Institute for Learning and Memory
  • Department of Brain and Cognitive Sciences

Related Topics

  • Pharmaceuticals
  • Neuroscience
  • Brain and cognitive sciences
  • Health sciences and technology
  • Health care
  • Picower Institute
  • Institute for Medical Engineering and Science (IMES)

Related Articles

A hospital operating room is seen from behind a blue-gowned anesthesiologist as she applies a mask to a patient. Another doctor is at the far end of the gurney.

Anesthesia technology precisely controls unconsciousness in animal tests

Colorful collage shows 3 brain icons floating amongst wavey lines.

Study finds tracking brain waves could reduce post-op complications

Portrait photo of Emery Brown standing in front of a white stone-covered wall

3 Questions: Emery Brown on improving anesthesia with neuroscience

Photo of a team of surgeons and an anesthesiologist gathered around a patient on an operating table

Statistical model defines ketamine anesthesia’s effects on the brain

More mit news.

Namrata Kala sits in glass-walled building

Improving working environments amid environmental distress

Read full story →

Ashesh Rambachan converses with a student in the front of a classroom.

A data-driven approach to making better choices

On the left, Erik Lin-Greenberg talks, smiling, with two graduate students in his office. On the right, Tracy Slatyer sits with two students on a staircase, conversing warmly.

Paying it forward

Portrait photo of John Fucillo posing on a indoor stairwell

John Fucillo: Laying foundations for MIT’s Department of Biology

Graphic of hand holding a glowing chip-based 3D printer

Researchers demonstrate the first chip-based 3D printer

Drawing of old English church with British Pound signs overlaid in some blank areas.

The unexpected origins of a modern finance tool

  • More news on MIT News homepage →

Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA, USA

  • Map (opens in new window)
  • Events (opens in new window)
  • People (opens in new window)
  • Careers (opens in new window)
  • Accessibility
  • Social Media Hub
  • MIT on Facebook
  • MIT on YouTube
  • MIT on Instagram

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Electronics, photonics and device physics articles from across Nature Portfolio

Electronics, photonics and device physics is the study and development of components for processing information or for system control. Electronics operates using electrons, whereas photonics uses light. An important focus is on miniaturization; reducing the size of individual components so that they can be integrated together in compact modules.

Related Subjects

  • Electronic and spintronic devices
  • Optomechanics
  • Photonic devices
  • Superconducting devices

Latest Research and Reviews

topics for research paper in electronics

Advances in understanding quantum dot light-emitting diodes

Quantum dot light-emitting diodes (QD-LEDs) are attractive for display and lighting applications. Precise understanding of their operational and degradation mechanisms will greatly promote the commercialization of this technology. This Review summarizes the key understanding and remaining challenges of QD-LEDs.

  • Fengjia Fan

topics for research paper in electronics

Development of a novel self-healing Zn(II)-metallohydrogel with wide bandgap semiconducting properties for non-volatile memory device application

  • Subhendu Dhibar
  • Soumya Jyoti Ray

topics for research paper in electronics

Industry perspective on power electronics for electric vehicles

This Review discusses the state-of-the-art power electronics in electric vehicles based on Si, SiC and GaN from an industry perspective, with a particular focus on the module power densities, efficiencies, costs and reliabilities with the 800-V battery.

  • Chang-Ching Tu
  • Chia-Lung Hung
  • Hao-Chung Kuo

topics for research paper in electronics

Superconducting spintronic heat engine

An electrical heat engine has been realized at sub-Kelvin temperatures. It consists of a superconducting spin-selective tunnel junction of EuS/Al/AlOx/Co. The efficiency of the engine is quantified for different magnetic configurations.

  • Clodoaldo Irineu Levartoski de Araujo
  • Pauli Virtanen
  • Elia Strambini

topics for research paper in electronics

Antiferromagnetic tunnel junctions for spintronics

  • Ding-Fu Shao
  • Evgeny Y. Tsymbal

Multiferroics: different routes to magnetoelectric coupling

  • Maxim Mostovoy

Advertisement

News and Comment

Highly-efficient vcsel breaking the limit.

  • Dieter Bimberg
  • Fumio Koyama
  • Kenichi Iga

topics for research paper in electronics

Van der Waals magnet integration for energy-efficient spintronics

An article in Science Advances reports an integrated van der Waals system that enables field-free electric control of the magnetization of Fe 3 GaTe 2 above room temperature.

Transforming edge hardware with in situ learning features

Memristor devices have shown notable superiority in the realm of neuromorphic computing chips, particularly in artificial intelligence (AI) inference tasks. Researchers are now grappling with the intricacies of incorporating in situ learning capabilities into memristor-based chips, paving the way for more powerful edge intelligence.

  • Huaqiang Wu

topics for research paper in electronics

Soft robotic apparel improves walking in Parkinson’s disease

An article in Nature Medicine reports soft robotic apparel that improves walking and alleviates freezing of gait associated with Parkinson’s disease.

  • Nesma El-Sayed Ibrahim

topics for research paper in electronics

Highly-coherent second-harmonic generation in a chip-scale source

topics for research paper in electronics

Exceptional dynamics at exceptional points

Schematic view of the exceptional point on the bilayer metasurface, exhibiting a unidirectional scattering behavior of perfect absorption/reflection.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

topics for research paper in electronics

FinancialResearch.gov

Conferences, 2024 financial stability conference – call for papers.

Published: June 4, 2024

Share on Facebook Share on Linked In Logo for Twitter

The Federal Reserve Bank of Cleveland and the Office of Financial Research invite the submission of research and policy-oriented papers for the 2024 Financial Stability Conference on November 21–22, 2024. The conference will be held in person in Cleveland, Ohio, and virtually.

Markets and institutions, increasingly interconnected, are being challenged by the dizzying pace of changes in the financial system, accelerating the buildup of risk and threats to solvency. Regulatory adaptations add another layer of complexity to the issue. Increasingly sophisticated algorithms and the rise of generative artificial intelligence may create new vulnerabilities across the system as banks, nonbank financial institutions, and financial markets exploit nascent opportunities. The twelfth annual conference will explore how firms and markets can become resilient or even antifragile and how regulators can encourage and accommodate needed changes.

Conference Format

The conference will bring together policymakers, market participants, and researchers in two types of sessions:

  • Policy Discussions These sessions include keynote addresses and panel discussions in which participants from industry, regulatory agencies, and academia share their insights.
  • Research Forums These forums follow the format of an academic workshop and comprise sessions to discuss submitted papers.

We welcome submissions of research on topics related to potential financial stability risks faced by financial markets and institutions, sources of financial system resilience, and related public policy. Conference topics include but are not limited to the following:

Emerging Risks

As the financial system continues to evolve, new risks emerge along with new businesses, new strategies, and new technologies. Old problems take on new dimensions as fiscal and monetary policies adapt to new economic and political realities, thereby adding new stresses to regulatory frameworks that themselves struggle to adapt. As information technology moves risk out of closely regulated sectors, it also creates new vulnerabilities from cyber-attacks. A rapidly changing physical environment and the prospect of nonhuman intelligences add even more uncertainty.

  • Financial stability concerns related to faster payments and equity transactions such as the implementation of t+1 settlement
  • The financial stability implications of generative AI and deep learning
  • Cryptocurrencies, smart contracts, and blockchain
  • Cyber-attacks
  • Climate risk
  • Interaction of monetary policy with macroprudential supervision
  • Sources of resilience in the financial sector

Financial Institutions

A riskier macroeconomic environment poses challenges for financial institutions and their supervisors. Risk management tools and strategies will be tested by fluctuations in inflation and output and by new regulations designed to mitigate vulnerabilities. Network effects, including interactions with a rapidly evolving fintech and crypto sector, may lead to further risks at a systemic level. How are institutions adapting to these risks and associated regulatory changes? How prepared are regulators and policymakers? Are existing microprudential and macroprudential toolkits sufficient?

  • Bank lending to nonbank financial institutions (NBFI)
  • Insurance markets
  • Banking as a service (BaaS)
  • Regional banks
  • Interest rate risk
  • Risks of rapid growth
  • Unrealized losses on balance sheets and mark-to-market accounting
  • Impact of reforms to lenders of last resort, deposit Insurance, capital rules, and the FHLB system

Financial Markets

Inflation and the associated responses of central banks around the world have contributed to stress to financial markets that has not been seen in the recent past. Financial stability threats may arise from resulting reallocations through volatility spikes, fire sales, and financial contagion. The continued development of algorithms, decentralized finance (DeFi), and complex artificial intelligence has the potential to add novel risks to financial markets. To what extent do investors recognize these risks, and how does recognition affect investors’ allocations? How does opacity resulting from deficiencies in reporting, risk management, and operation standards for these risks affect investor behavior?

  • Risks associated with high levels and issuance of public debt (for example, recent volatility around Treasury funding announcements, concerns about primary dealers and principal trading firms, the SEC’s recent rule about what defines a dealer and what that might mean for Treasury markets)
  • Short-term funding
  • Implications of deficits, central bank balance sheet policies, and financial stability
  • The impact of technological innovation on financial markets

Real Estate Markets

Real estate is often one of the sectors most affected by and can be a cause of financial instability. Construction and housing play a major role in the transmission of monetary policy, and real estate-based lending remains a major activity of banks, insurance companies, and mortgage companies. A complex and active securities market ties together financial institutions and markets in both residential and commercial real estate.

  • Commercial real estate (CRE)
  • Nonbank originators and servicers
  • International contagion
  • Implications of remote work and the impact of COVID-19
  • Effects of monetary policy on real estate markets

Scientific Committee

  • Vikas Agarwal, Georgia State University
  • Marco Di Maggio, Harvard University
  • Michael Fleming, Federal Reserve Bank of New York
  • Rod Garratt, University of California, Santa Barbara
  • Mariassunta Giannetti, Stockholm School of Economics
  • Arpit Gupta, New York University, Stern School of Business
  • Zhiguo He, Stanford University
  • Zhaogang Song, Johns Hopkins University
  • Russell R. Wermers, Robert H. Smith School of Business, The University of Maryland at College Park

Paper Submission Procedure

The deadline for submissions is Friday, July 5, 2024. Please submit completed papers through Conference Maker . Notification of acceptance will be provided by Friday, September 6, 2024. Final conference papers are due on Friday, November 1, 2024. In-person paper presentations are preferred. Questions should be directed to [email protected] .

Back to Conferences

You are now leaving the OFR’s website.

You will be redirected to:

You are now leaving the OFR Website. The website associated with the link you have selected is located on another server and is not subject to Federal information quality, privacy, security, and related guidelines. To remain on the OFR Website, click 'Cancel'. To continue to the other website you selected, click 'Proceed'. The OFR does not endorse this other website, its sponsor, or any of the views, activities, products, or services offered on the website or by any advertiser on the website.

Thank you for visiting www.financialresearch.gov.

IMAGES

  1. Technical Paper Presentation topics for Electronics Engineering

    topics for research paper in electronics

  2. IEEE Journal of Emerging and Selected Topics in Power Electronics

    topics for research paper in electronics

  3. Electronics assignment

    topics for research paper in electronics

  4. IEEE Paper Template in A4 (V1)

    topics for research paper in electronics

  5. Research Paper

    topics for research paper in electronics

  6. (PDF) International Journal of Electrical and Electronics Engineering

    topics for research paper in electronics

VIDEO

  1. Top 4 Electronics Projects of This Month's

  2. Electrical seminar topics 2023

  3. Professor. Dr. Zafar Iqbal Emeritus in Physics Quaid e azam University

  4. Online Workshop on Research Paper Writing & Publishing Day 1

  5. Dr. Imran Murtaza

  6. Online Workshop on Research Paper Writing & Publishing Day 2

COMMENTS

  1. Frontiers in Electronics

    1,167 views. 1 article. An innovative journal that explores the increasingly pervasive role of electronics in technological innovation - from materials and devices, to circuits, systems, and electronic architectures.

  2. Electrical and electronic engineering

    RSS Feed. Electrical and electronic engineering is the branch of engineering that makes use of electricity. Electrical engineering concentrates on systems for generating and transmitting large ...

  3. Electronics Research Paper Topics

    This list of electronics research paper topics provides the list of 30 potential topics for research papers and an overview article on the history of electronics. 1. Applications of Superconductivity. The 1986 Applied Superconductivity Conference proclaimed, ''Applied superconductivity has come of age.''. The claim reflected only 25 ...

  4. Semiconductors

    The integration of high-performance n-type and p-type two-dimensional transistors — which can be fabricated on 300 mm wafers using a die-by-die transfer process — is an important step in the ...

  5. Electrical and electronic engineering

    Read the latest Research articles in Electrical and electronic engineering from Scientific Reports

  6. Power Electronics

    This Section is devoted to publishing original research and state-of-the-art review papers on emerging technologies and trends in power electronics, including components, circuits, design, modelling, simulation, control, implementation, testing and analysis of power electronics and their applications.

  7. Top 75 Emerging Research Topics in Electrical Engineering

    1.1 Smart Grids and Micro-grids. a. Distributed control strategies for micro-grid management. b. Blockchain applications for secure energy transactions in smart grids. c. Resilience and robustness enhancement in smart grid systems against cyber threats. d. Integration of renewable energy sources in micro-grids. e.

  8. Electronics and Communication Engineering

    Welcome innovative ideas, relevant discussions and informative feedbacks on the topic. | Explore the latest full-text research PDFs, articles, conference papers, preprints and more on ELECTRONICS ...

  9. Research topics in electronics and electrical engineering

    Piezoelectrics and ferroelectrics. Studying behaviour thru computational modelling. Computation research in new technologies, materials. Power electronics tools and equipment. Electrical motors and their redesigning. Energy networks and their mathematical foundations. Computer-aided design for electrical engineering. Smart grid monitoring.

  10. digital electronics Latest Research Papers

    Digital Electronics . Relevant Role. The molecular Field-Coupled Nanocomputing (FCN) is a promising implementation of the Quantum-dot Cellular Automata (QCA) paradigm for future low-power digital electronics. However, most of the literature assumes all the QCA devices as possible molecular FCN devices, ignoring the molecular physics.

  11. 98367 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on DIGITAL ELECTRONICS. Find methods information, sources, references or conduct a literature review on ...

  12. (PDF) Electronics and Its Worldwide Research

    The contributions of researchers at a global level in the journal Electronics in the period 2012-2020 are analyzed. The objective of this work is to establish a global vision of the issues ...

  13. The Premier Place to Publish the Latest Research in Power Electronics

    The Premier Place to Publish the Latest Research in Power Electronics Published in: IEEE Transactions on Power Electronics ( Volume: 38 , Issue: 7 , July 2023) Article #: Page(s): 8676 - 8676. Date of Publication: 19 May ... Electronic ISSN: 1941-0107 INSPEC Accession Number:

  14. Electronics and Communication Engineering Research Topics

    List of Topics. SSRG International Journal of Electronics and Communication Engineering (SSRG - IJECE) - is a journal that publishes articles that contribute new novel experimentation and theoretical work in all electronics and communication engineering and its applications. The journal welcomes publications of high-quality papers on ...

  15. Electronics

    The "Microelectronics" Section of Electronics (ISSN: 2079-9292) is dedicated to publishing original research articles and cutting-edge reviews on the applications of microelectronics in emerging and challenging technologies. Electronics operating in extreme environments, such as a vacuum, space, harsh radiation, extreme cold and other niche applications, advances microelectronic designs.

  16. Electronic devices

    Electronic devices are components for controlling the flow of electrical currents for the purpose of information processing and system control. Prominent examples include transistors and diodes ...

  17. 100+ Electrical Engineering Research Topics

    Top Research Topics for Electrical Engineering Students. For your convenience, we have compiled here a list of the top 100 electrical engineering project ideas in 2021. Distance Locator for an underground cable fault. An analysis of battery energy storage (BES) systems financial incentive policies. Photovoltaic conversion efficiency improvement ...

  18. 113 Great Research Paper Topics

    113 Great Research Paper Topics. One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily ...

  19. 1000+ Electronics Engineering Presentation Topics

    Here is the list of thousands of presentation ideas for presentations for electronics and telecommunication engineering students. 21st Century Electronic Devices. 3 Axis Digital Accelerometer. 3- D IC's. 3-D Chip Stacking Technique. 3D Internet. 3D MEMS. 3D optical Data Storage Technology. 3D Solar Cell Technology.

  20. Electrical Electronics Engineering Research Papers/Topics

    Abstract: An ion sensitive field effect transistor can outperform conventional ion-selective electrodes. Thus, a zinc oxide (ZnO) nanowire field effect transistor (NWFET) pH sensor was fabricated and measured. The sensor contained a channel with 1.7×1018 cm-3 donor concentration and 100 ZnO nanowires in parallel, each with the following ...

  21. Seminar Topics For Electronics Students And Enthusiasts

    The list with brief introductions provides an overview of each seminar topic and offers a glimpse into the areas of exploration and discussion within the field of electronics. 1. Internet of Things (IoT) in Electronics. This topic explores the integration of IoT technology with electronic systems and devices, enabling connectivity, data ...

  22. Physicists create five-lane superhighway for electrons

    MIT physicists and colleagues have created a five-lane superhighway for electrons that could allow ultra-efficient electronics and more. The work, reported in the May 10 issue of Science, is one of several important discoveries by the same team over the past year involving a material that is a unique form of graphene. "This discovery has direct implications for low-power electronic devices ...

  23. Ultrasound offers a new way to perform deep brain stimulation

    MIT graduate student Jason Hou and MIT postdoc Md Osman Goni Nayeem are the lead authors of the paper, along with collaborators from MIT's McGovern Institute for Brain Research, Boston University, and Caltech. ... but the researchers envision that future versions could be powered a small implantable battery and electronics unit.

  24. Research articles

    Advanced complementary metal-oxide-semiconductor technology and resistive random-access memory can be used to create high-bit-precision compute-in-memory macros for low latency and efficient ...

  25. Broadband Internet Access, Economic Growth, and Wellbeing

    Broadband Internet Access, Economic Growth, and Wellbeing. Kathryn R. Johnson & Claudia Persico. Working Paper 32517. DOI 10.3386/w32517. Issue Date May 2024. Between 2000 and 2008, access to high-speed, broadband internet grew significantly in the United States, but there is debate on whether access to high-speed internet improves or harms ...

  26. Sustainability

    This study aims to investigate the feasibility of using paper made from eco-friendly recycled and non-woody plants in graphic technology, particularly in offset printing. Instead of changing the composition or modifying the surface properties of the paper, the focus was on enhancing the print quality by modifying the printing ink. By modifying the printing inks, the quality of the prints on ...

  27. Study models how ketamine's molecular action leads to its effects on

    "The finding that an individual synaptic receptor (NMDA) can produce gamma oscillations and that these gamma oscillations can influence network-level gamma was unexpected," says co-corresponding author Michelle McCarthy, a research assistant professor of math at BU."This was found only by using a detailed physiological model of the NMDA receptor.

  28. Electronics, photonics and device physics

    Electronics, photonics and device physics is the study and development of components for processing information or for system control. Electronics operates using electrons, whereas photonics uses ...

  29. 2024 Financial Stability Conference

    Notification of acceptance will be provided by Friday, September 6, 2024. Final conference papers are due on Friday, November 1, 2024. In-person paper presentations are preferred. Questions should be directed to [email protected]. The 2024 Financial Stability Conference hosted by the OFR and Federal Reserve Bank of ...