Masks Strongly Recommended but Not Required in Maryland, Starting Immediately

Due to the downward trend in respiratory viruses in Maryland, masking is no longer required but remains strongly recommended in Johns Hopkins Medicine clinical locations in Maryland. Read more .

  • Vaccines  
  • Masking Guidelines
  • Visitor Guidelines  

White illustration of a brain against a bright blue background.

Brain Anatomy and How the Brain Works

What is the brain.

The brain is a complex organ that controls thought, memory, emotion, touch, motor skills, vision, breathing, temperature, hunger and every process that regulates our body. Together, the brain and spinal cord that extends from it make up the central nervous system, or CNS.

What is the brain made of?

Weighing about 3 pounds in the average adult, the brain is about 60% fat. The remaining 40% is a combination of water, protein, carbohydrates and salts. The brain itself is a not a muscle. It contains blood vessels and nerves, including neurons and glial cells.

What is the gray matter and white matter?

Gray and white matter are two different regions of the central nervous system. In the brain, gray matter refers to the darker, outer portion, while white matter describes the lighter, inner section underneath. In the spinal cord, this order is reversed: The white matter is on the outside, and the gray matter sits within.

Cross sections of the brain and spinal cord, showing the grey and white matter.

Gray matter is primarily composed of neuron somas (the round central cell bodies), and white matter is mostly made of axons (the long stems that connects neurons together) wrapped in myelin (a protective coating). The different composition of neuron parts is why the two appear as separate shades on certain scans.

Parts of a nerve cell: the central soma cell body with inner nucleus and outer dendrites and long axon tail, insulated by myelin pads.

Each region serves a different role. Gray matter is primarily responsible for processing and interpreting information, while white matter transmits that information to other parts of the nervous system.

How does the brain work?

The brain sends and receives chemical and electrical signals throughout the body. Different signals control different processes, and your brain interprets each. Some make you feel tired, for example, while others make you feel pain.

Some messages are kept within the brain, while others are relayed through the spine and across the body’s vast network of nerves to distant extremities. To do this, the central nervous system relies on billions of neurons (nerve cells).

Main Parts of the Brain and Their Functions

At a high level, the brain can be divided into the cerebrum, brainstem and cerebellum.

Diagram of the brain's major parts: cerebrum, cerebellum and brainstem

The cerebrum (front of brain) comprises gray matter (the cerebral cortex) and white matter at its center. The largest part of the brain, the cerebrum initiates and coordinates movement and regulates temperature. Other areas of the cerebrum enable speech, judgment, thinking and reasoning, problem-solving, emotions and learning. Other functions relate to vision, hearing, touch and other senses.

Cerebral Cortex

Cortex is Latin for “bark,” and describes the outer gray matter covering of the cerebrum. The cortex has a large surface area due to its folds, and comprises about half of the brain’s weight.

The cerebral cortex is divided into two halves, or hemispheres. It is covered with ridges (gyri) and folds (sulci). The two halves join at a large, deep sulcus (the interhemispheric fissure, AKA the medial longitudinal fissure) that runs from the front of the head to the back. The right hemisphere controls the left side of the body, and the left half controls the right side of the body. The two halves communicate with one another through a large, C-shaped structure of white matter and nerve pathways called the corpus callosum. The corpus callosum is in the center of the cerebrum.

The brainstem (middle of brain) connects the cerebrum with the spinal cord. The brainstem includes the midbrain, the pons and the medulla.

  • Midbrain. The midbrain (or mesencephalon) is a very complex structure with a range of different neuron clusters (nuclei and colliculi), neural pathways and other structures. These features facilitate various functions, from hearing and movement to calculating responses and environmental changes. The midbrain also contains the substantia nigra, an area affected by Parkinson’s disease that is rich in dopamine neurons and part of the basal ganglia, which enables movement and coordination.
  • Pons. The pons is the origin for four of the 12 cranial nerves, which enable a range of activities such as tear production, chewing, blinking, focusing vision, balance, hearing and facial expression. Named for the Latin word for “bridge,” the pons is the connection between the midbrain and the medulla.
  • Medulla. At the bottom of the brainstem, the medulla is where the brain meets the spinal cord. The medulla is essential to survival. Functions of the medulla regulate many bodily activities, including heart rhythm, breathing, blood flow, and oxygen and carbon dioxide levels. The medulla produces reflexive activities such as sneezing, vomiting, coughing and swallowing.

The spinal cord extends from the bottom of the medulla and through a large opening in the bottom of the skull. Supported by the vertebrae, the spinal cord carries messages to and from the brain and the rest of the body.

The cerebellum (“little brain”) is a fist-sized portion of the brain located at the back of the head, below the temporal and occipital lobes and above the brainstem. Like the cerebral cortex, it has two hemispheres. The outer portion contains neurons, and the inner area communicates with the cerebral cortex. Its function is to coordinate voluntary muscle movements and to maintain posture, balance and equilibrium. New studies are exploring the cerebellum’s roles in thought, emotions and social behavior, as well as its possible involvement in addiction, autism and schizophrenia.

Brain Coverings: Meninges

Three layers of protective covering called meninges surround the brain and the spinal cord.

  • The outermost layer, the dura mater , is thick and tough. It includes two layers: The periosteal layer of the dura mater lines the inner dome of the skull (cranium) and the meningeal layer is below that. Spaces between the layers allow for the passage of veins and arteries that supply blood flow to the brain.
  • The arachnoid mater is a thin, weblike layer of connective tissue that does not contain nerves or blood vessels. Below the arachnoid mater is the cerebrospinal fluid, or CSF. This fluid cushions the entire central nervous system (brain and spinal cord) and continually circulates around these structures to remove impurities.
  • The pia mater is a thin membrane that hugs the surface of the brain and follows its contours. The pia mater is rich with veins and arteries.

Three layers of the meninges beneath the skull: the outer dura mater, arachnoid and inner pia mater

Lobes of the Brain and What They Control

Each brain hemisphere (parts of the cerebrum) has four sections, called lobes: frontal, parietal, temporal and occipital. Each lobe controls specific functions.

Diagram of the brain's lobes: frontal, temporal, parietal and occipital

  • Frontal lobe. The largest lobe of the brain, located in the front of the head, the frontal lobe is involved in personality characteristics, decision-making and movement. Recognition of smell usually involves parts of the frontal lobe. The frontal lobe contains Broca’s area, which is associated with speech ability.
  • Parietal lobe. The middle part of the brain, the parietal lobe helps a person identify objects and understand spatial relationships (where one’s body is compared with objects around the person). The parietal lobe is also involved in interpreting pain and touch in the body. The parietal lobe houses Wernicke’s area, which helps the brain understand spoken language.
  • Occipital lobe. The occipital lobe is the back part of the brain that is involved with vision.
  • Temporal lobe. The sides of the brain, temporal lobes are involved in short-term memory, speech, musical rhythm and some degree of smell recognition.

Deeper Structures Within the Brain

Pituitary gland.

Sometimes called the “master gland,” the pituitary gland is a pea-sized structure found deep in the brain behind the bridge of the nose. The pituitary gland governs the function of other glands in the body, regulating the flow of hormones from the thyroid, adrenals, ovaries and testicles. It receives chemical signals from the hypothalamus through its stalk and blood supply.

Hypothalamus

The hypothalamus is located above the pituitary gland and sends it chemical messages that control its function. It regulates body temperature, synchronizes sleep patterns, controls hunger and thirst and also plays a role in some aspects of memory and emotion.

Small, almond-shaped structures, an amygdala is located under each half (hemisphere) of the brain. Included in the limbic system, the amygdalae regulate emotion and memory and are associated with the brain’s reward system, stress, and the “fight or flight” response when someone perceives a threat.

Hippocampus

A curved seahorse-shaped organ on the underside of each temporal lobe, the hippocampus is part of a larger structure called the hippocampal formation. It supports memory, learning, navigation and perception of space. It receives information from the cerebral cortex and may play a role in Alzheimer’s disease.

Pineal Gland

The pineal gland is located deep in the brain and attached by a stalk to the top of the third ventricle. The pineal gland responds to light and dark and secretes melatonin, which regulates circadian rhythms and the sleep-wake cycle.

Ventricles and Cerebrospinal Fluid

Deep in the brain are four open areas with passageways between them. They also open into the central spinal canal and the area beneath arachnoid layer of the meninges.

The ventricles manufacture cerebrospinal fluid , or CSF, a watery fluid that circulates in and around the ventricles and the spinal cord, and between the meninges. CSF surrounds and cushions the spinal cord and brain, washes out waste and impurities, and delivers nutrients.

Diagram of the brain's deeper structures

Blood Supply to the Brain

Two sets of blood vessels supply blood and oxygen to the brain: the vertebral arteries and the carotid arteries.

The external carotid arteries extend up the sides of your neck, and are where you can feel your pulse when you touch the area with your fingertips. The internal carotid arteries branch into the skull and circulate blood to the front part of the brain.

The vertebral arteries follow the spinal column into the skull, where they join together at the brainstem and form the basilar artery , which supplies blood to the rear portions of the brain.

The circle of Willis , a loop of blood vessels near the bottom of the brain that connects major arteries, circulates blood from the front of the brain to the back and helps the arterial systems communicate with one another.

Diagram of the brain's major arteries

Cranial Nerves

Inside the cranium (the dome of the skull), there are 12 nerves, called cranial nerves:

  • Cranial nerve 1: The first is the olfactory nerve, which allows for your sense of smell.
  • Cranial nerve 2: The optic nerve governs eyesight.
  • Cranial nerve 3: The oculomotor nerve controls pupil response and other motions of the eye, and branches out from the area in the brainstem where the midbrain meets the pons.
  • Cranial nerve 4: The trochlear nerve controls muscles in the eye. It emerges from the back of the midbrain part of the brainstem.
  • Cranial nerve 5: The trigeminal nerve is the largest and most complex of the cranial nerves, with both sensory and motor function. It originates from the pons and conveys sensation from the scalp, teeth, jaw, sinuses, parts of the mouth and face to the brain, allows the function of chewing muscles, and much more.
  • Cranial nerve 6: The abducens nerve innervates some of the muscles in the eye.
  • Cranial nerve 7: The facial nerve supports face movement, taste, glandular and other functions.
  • Cranial nerve 8: The vestibulocochlear nerve facilitates balance and hearing.
  • Cranial nerve 9: The glossopharyngeal nerve allows taste, ear and throat movement, and has many more functions.
  • Cranial nerve 10: The vagus nerve allows sensation around the ear and the digestive system and controls motor activity in the heart, throat and digestive system.
  • Cranial nerve 11: The accessory nerve innervates specific muscles in the head, neck and shoulder.
  • Cranial nerve 12: The hypoglossal nerve supplies motor activity to the tongue.

The first two nerves originate in the cerebrum, and the remaining 10 cranial nerves emerge from the brainstem, which has three parts: the midbrain, the pons and the medulla.

Find a Treatment Center

  • Neurology and Neurosurgery

Find Additional Treatment Centers at:

  • Howard County Medical Center
  • Sibley Memorial Hospital
  • Suburban Hospital

Request an Appointment

No image available

Facioscapulohumeral Muscular Dystrophy in Children

No image available

Moyamoya Disease

Motor Stereotypies

Related Topics

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

September 9, 2021

How the brain solves problems

by Delia Du Toit, Wits University

brain

In trying to think of an introduction for this article it occurred to me that had I been inside an MRI, the screen would have showed several brain regions lighting up like Times Square as my mind was attempting to solve the problem.

First, the prefrontal cortex, basal ganglia and thalamus would recognize that the blank page meant that there was a problem that needed to be solved. The thought that the editor might not favor this first-person account in a science article would send the limbic system , the primal part of the brain where emotions are processed, into overdrive. The amygdala, that little almond-shaped nugget at the base of the brain, would look like a Christmas tree as anxiety ticked up.

Finally, as words started filling the screen, the prefrontal cortex behind the forehead would flicker and flash. The hippocampus would access memories of previous similar articles, the information-gathering process and even school-level English classes decades ago, to help the process along. And all this activity would happen at once.

Holistic problem solving

Depending on the problem in front of you, the entire brain could be involved in trying to find a solution, says Professor Kate Cockcroft, Division Leader of cognitive neuroscience at the Neuroscience Research Laboratory (Wits NeuRL) in the School of Human and Community Development.

"You would use many different brain regions to solve a problem, especially a novel or difficult one. The idea of processes being localized in one or two parts of the brain has been replaced with newer evidence that it is the connections among brain areas and their interaction that is important in cognitive processes . Some areas may be more activated with certain problems—a visual problem would activate the visual cortices, for example.

"All this activity takes place as electrochemical signals. The signals form within neurons, pass along the branch-like axons and jump from one neuron to the next across gaps called synapses, with the help of neurotransmitter chemicals. The pattern, size, shape and number of these signals, what they communicate with, and the region of the brain in which they happen, determine what they achieve."

Although problem solving is a metacognitive—"thinking about thinking"—process, that does not make it solely the domain of the highly evolved human prefrontal cortex , adds Dr. Sahba Besharati, Division Leader of social-affective neuroscience at NeuRL.

"This is the most recently evolved part of the human brain, but problem solving does not happen in isolation—it's immersed in a social context that influences how we interpret information. Your background, gender, religion or emotions, among other factors, all influence how you interpret a problem. This means that it would involve other brain areas like the limbic system, one of the oldest brain systems housed deep within the cortex," says Besharati.

"Problem-solving abilities are not a human peculiarity. Some animals are even better than us at solving certain problems, but we all share basic problem-solving skills—if there's danger, leave; if you're hungry, find food."

None of this would be possible without memory either, says Cockcroft. "Without it, we would forget what it is that we are trying to solve and we wouldn't be able to use past experiences to help us solve it."

And memory is, again, linked to emotion. "We use this information to increase the likelihood of positive results when solving new problems," she says.

Improving your skills

It has been proven time and again that just about any brain process can be improved—including problem-solving abilities. "Brain plasticity is a real thing—the brain can reorganize itself with targeted intervention," says Besharati. "Rehabilitation from neurological injury is a dynamic process and an ever-improving science that has allowed us to understand how the brain can change and adapt in response to the environment. Studies have also shown that simple memorisation exercises can assist tremendously in retaining cognitive skills in old age."

Of course, all these processes depend on your brain recognizing that there's a problem to be dealt with in the first place—if you don't realize you're spending money foolishly, you can't improve your finances. "Recognition of a problem can happen at both a conscious and unconscious level. Stroke patients who are not aware of their motor paralysis, for example, deludedly don't believe that they are paralyzed and will sometimes not engage in rehabilitation. But their delusions often spontaneously recover, suggesting recognition at an unconscious level and that, over time, the brain can restore function."

If all else fails, there might be some value to the adage "sleep on it," says Cockcroft. "Sleep is believed to assist memory consolidation—changing memories from a fragile state in which they can easily be damaged to a permanent state. In doing so, they become stored in different brain regions and new neural connections are formed that may assist problem solving. On waking, you may have formed associations between information that you didn't think of previously. This seems to be most effective within three hours of learning new information—perhaps we should institute compulsory naps for students after lectures!"

Explore further

Feedback to editors

which part of the brain is responsible for problem solving

Modular communicative leadless ICD found to be safe and exceeds performance expectations

10 hours ago

which part of the brain is responsible for problem solving

Creativity and humor shown to promote well-being in older adults via similar mechanisms

which part of the brain is responsible for problem solving

Sweet taste receptor affects how glucose is handled metabolically by humans

12 hours ago

which part of the brain is responsible for problem solving

Better medical record-keeping needed to fight antibiotic overuse, studies suggest

18 hours ago

which part of the brain is responsible for problem solving

Repeat COVID-19 vaccinations elicit antibodies that neutralize variants, other viruses

which part of the brain is responsible for problem solving

A long-term ketogenic diet accumulates aged cells in normal tissues, new study shows

May 17, 2024

which part of the brain is responsible for problem solving

Gut bacteria enhance cancer immunotherapy in mouse study

which part of the brain is responsible for problem solving

Research finds the protein VISTA directly blocks T cells from functioning in immunotherapy

which part of the brain is responsible for problem solving

Study opens the door to designing therapies to improve lung development in growth-restricted fetuses

which part of the brain is responsible for problem solving

Researchers make strides in microbiome-based cancer therapies via iron deprivation in the tumor microenvironment

Related stories.

which part of the brain is responsible for problem solving

Have a vexing problem? Sleep on it.

Oct 17, 2019

which part of the brain is responsible for problem solving

Can't solve a riddle? The answer might lie in knowing what doesn't work

Mar 4, 2021

which part of the brain is responsible for problem solving

Researchers question the existence of the social brain as a separate system

Oct 15, 2020

which part of the brain is responsible for problem solving

Creativity important to lift math education

Feb 4, 2020

which part of the brain is responsible for problem solving

A child's brain activity reveals their memory ability

May 25, 2020

which part of the brain is responsible for problem solving

Why people with depression can sometimes experience memory problems

Feb 9, 2021

Recommended for you

which part of the brain is responsible for problem solving

The neural signature of subjective disgust could apply to both sensory and socio-moral experiences

which part of the brain is responsible for problem solving

Researcher discovers drug that may delay onset of Alzheimer's, Parkinson's disease and treat hydrocephalus

which part of the brain is responsible for problem solving

Study reveals that the brain modulates visual signals according to internal states

which part of the brain is responsible for problem solving

Key protein behind brain asymmetry uncovered by scientists

which part of the brain is responsible for problem solving

New technique to freeze brain tissue without harm

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Parts of the Brain and Their Functions

Parts of the Brain

The human brain is the epicenter of our nervous system and plays a pivotal role in virtually every aspect of our lives. It’s a complex, highly organized organ responsible for thoughts, feelings, actions, and interactions with the world around us. Here is a look at the intricate anatomy of the brain, its functions, and the consequences of damage to different areas.

Introduction to the Brain and Its Functions

The brain is an organ of soft nervous tissue that is protected within the skull of vertebrates. It functions as the coordinating center of sensation and intellectual and nervous activity. The brain consists of billions of neurons (nerve cells) that communicate through intricate networks. The primary functions of the brain include processing sensory information, regulating bodily functions, forming thoughts and emotions, and storing memories.

Main Parts of the Brain – Anatomy

The three main parts of the brain are the cerebrum, cerebellum, and brainstem.

1. Cerebrum

  • Location: The cerebellum occupies the upper part of the cranial cavity and is the largest part of the human brain.
  • Functions: It’s responsible for higher brain functions, including thought, action, emotion, and interpretation of sensory data.
  • Effects of Damage: Depending on the area affected, damage leads to memory loss, impaired cognitive skills, changes in personality, and loss of motor control.

2. Cerebellum

  • Location: The cerebellum is at the back of the brain, below the cerebrum.
  • Functions: It coordinates voluntary movements such as posture, balance, coordination, and speech.
  • Effects of Damage: Damage causes problems with balance, movement, and muscle coordination (ataxia).

3. Brainstem

  • Location: The brainstem is lower extension of the brain, connecting to the spinal cord. It includes the midbrain, pons, and medulla oblongata.
  • Functions: This part of the brain controls many basic life-sustaining functions, including heart rate, breathing, sleeping, and eating.
  • Effects of Damage: Damage results in life-threatening conditions like breathing difficulties, heart problems, and loss of consciousness.

Lobes of the Brain

The four lobes of the brain are regions of the cerebrum:

  • Location: This is the anterior or front part of the brain.
  • Functions: Decision making, problem solving, control of purposeful behaviors, consciousness, and emotions.
  • Location: Sits behind the frontal lobe.
  • Functions: Processes sensory information it receives from the outside world, mainly relating to spatial sense and navigation (proprioception).
  • Location: Below the lateral fissure, on both cerebral hemispheres.
  • Functions: Mainly revolves around auditory perception and is also important for the processing of both speech and vision (reading).
  • Location: At the back of the brain.
  • Functions: Main center for visual processing.

Left vs. Right Brain Hemispheres

The cerebrum has two halves, called hemispheres. Each half controls functions on the opposite side of the body. So, the left hemisphere controls muscles on the right side of the body, and vice versa. But, the functions of the two hemispheres are not entirely identical:

  • Left Hemisphere: It’s dominant in language and speech and plays roles in logical thinking, analysis, and accuracy. .
  • Right Hemisphere: This hemisphere is more visual and intuitive and functions in creative and imaginative tasks.

The corpus callosum is a band of nerves that connect the two hemispheres and allow communication between them.

Detailed List of Parts of the Brain

While knowing the three key parts of the brain is a good start, the anatomy is quite a bit more complex. In addition to nervous tissues, the brain also contains key glands:

  • Cerebrum: The cerebrum is the largest part of the brain. Divided into lobes, it coordinates thought, movement, memory, senses, speech, and temperature.
  • Corpus Callosum : A broad band of nerve fibers joining the two hemispheres of the brain, facilitating interhemispheric communication.
  • Cerebellum : Coordinates movement and balance and aids in eye movement.
  • Pons : Controls voluntary actions, including swallowing, bladder function, facial expression, posture, and sleep.
  • Medulla oblongata : Regulates involuntary actions, including breathing, heart rhythm, as well as oxygen and carbon dioxide levels.
  • Limbic System : Includes the amygdala, hippocampus, and parts of the thalamus and hypothalamus.
  • Amygdala: Plays a key role in emotional responses, hormonal secretions, and memory formation.
  • Hippocampus: Plays a vital role in memory formation and spatial navigation.
  • Thalamus : Acts as the brain’s relay station, channeling sensory and motor signals to the cerebral cortex, and regulating consciousness, sleep, and alertness.
  • Basal Ganglia : A group of structures involved in processing information related to movement, emotions, and reward. Key structures include the striatum, globus pallidus, substantia nigra, and subthalamic nucleus.
  • Ventral Tegmental Area (VTA) : Plays a role in the reward circuit of the brain, releasing dopamine in response to stimuli indicating a reward.
  • Optic tectum : Also known as the superior colliculus, it directs eye movements.
  • Substantia Nigra : Involved in motor control and contains a large concentration of dopamine-producing neurons.
  • Cingulate Gyrus : Plays a role in processing emotions and behavior regulation. It also helps regulate autonomic motor function.
  • Olfactory Bulb : Involved in the sense of smell and the integration of olfactory information.
  • Mammillary Bodies : Plays a role in recollective memory.
  • Function: Regulates emotions, memory, and arousal.

Glands in the Brain

The hypothalamus, pineal gland, and pituitary gland are the three endocrine glands within the brain:

  • Hypothalamus : The hypothalamus links the nervous and endocrine systems. It contains many small nuclei. In addition to participating in eating and drinking, sleeping and waking, it regulates the endocrine system via the pituitary gland. It maintains the body’s homeostasis, regulating hunger, thirst, response to pain, levels of pleasure, sexual satisfaction, anger, and aggressive behavior.
  • Pituitary Gland : Known as the “master gland,” it controls various other hormone glands in the body, such as the thyroid and adrenals, as well as regulating growth, metabolism, and reproductive processes.
  • Pineal Gland : The pineal gland produces and regulates some hormones, including melatonin, which is crucial in regulating sleep patterns and circadian rhythms.

Gray Matter vs. White Matter

The brain and spinal cord consist of gray matter (substantia grisea) and white matter (substantia alba).

  • White Matter: Consists mainly of axons and myelin sheaths that send signals between different brain regions and between the brain and spinal cord.
  • Gray Matter: Consists of neuronal cell bodies, dendrites, and axon terminals. Gray matter processes information and directs stimuli for muscle control, sensory perception, decision making, and self-control.

Frequently Asked Questions (FAQs) About the Human Brain

  • The human brain contains approximately 86 billion neurons. Additionally, it has a similar or slightly higher number of non-neuronal cells (glial cells), making the total number of cells in the brain close to 170 billion.
  • There are about 86 billion neurons in the human brain. These neurons are connected by trillions of synapses, forming a complex networks.
  • The average adult human brain weighs about 1.3 to 1.4 kilograms (about 3 pounds). This weight represents about 2% of the total body weight.
  • The brain is about 73% water.
  • The myth that humans only use 10% of their brain is false. Virtually every part gets use, and most of the brain is active all the time, even during sleep.
  • The average size of the adult human brain is about 15 centimeters (6 inches) in length, 14 centimeters (5.5 inches) in width, and 9 centimeters (3.5 inches) in height.
  • Brain signal speeds vary depending on the type of neuron and the nature of the signal. They travel anywhere from 1 meter per second to over 100 meters per second in the fastest neurons.
  • With age, the brain’s volume and/or weight decrease, synaptic connections reduce, and there can be a decline in cognitive functions. However, the brain to continues adapting and forming new connections throughout life.
  • The brain has a limited ability to repair itself. Neuroplasticity aids recovery by allowing other parts of the brain to take over functions of the damaged areas.
  • The brain consumes about 20% of the body’s total energy , despite only making up about 2% of the body’s total weight . It requires a constant supply of glucose and oxygen.
  • Sleep is crucial for brain health. It aids in memory consolidation, learning, brain detoxification, and the regulation of mood and cognitive functions.
  • Douglas Fields, R. (2008). “White Matter Matters”. Scientific American . 298 (3): 54–61. doi: 10.1038/scientificamerican0308-54
  • Kandel, Eric R.; Schwartz, James Harris; Jessell, Thomas M. (2000). Principles of Neural Science (4th ed.). New York: McGraw-Hill. ISBN 978-0-8385-7701-1.
  • Kolb, B.; Whishaw, I.Q. (2003). Fundamentals of Human Neuropsychology (5th ed.). New York: Worth Publishing. ISBN 978-0-7167-5300-1.
  • Rajmohan, V.; Mohandas, E. (2007). “The limbic system”. Indian Journal of Psychiatry . 49 (2): 132–139. doi: 10.4103/0019-5545.33264
  • Shepherd, G.M. (1994). Neurobiology . Oxford University Press. ISBN 978-0-19-508843-4.

Related Posts

Frontal Lobe: What It Is, Function, Location & Damage

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

On This Page:

The frontal lobe is the brain’s largest region, located behind the forehead, at the front of the brain. These lobes are part of the cerebral cortex and are the largest brain structure.

The frontal lobe’s main functions are typically associated with ‘higher’ cognitive functions, including decision-making, problem-solving, thought, and attention .

It contains the motor cortex , which is involved in planning and coordinating movement; the prefrontal cortex, which is responsible for higher-level cognitive functioning; and Broca’s Area , which is essential for language production.

Frontal Lobe Described with Labels Anatomy

Frontal Lobe Functions

Below is a list of some of the associated functions of the frontal lobe:

Executive processes (capacity to plan, organize, initiate, and self-monitor) Voluntary behavior Problem-solving Voluntary motor control Intelligence Language processing Language comprehension Self-control Emotional control

The frontal lobes are believed to be our behavior and emotional control centers, meaning that this area is activated when needing to control our behaviors to be socially appropriate and to control our emotional responses, especially in social situations.

Moreover, the frontal lobes are thought to be the home of our personalities.

Alike to most lobes in the brain, there are two frontal lobes located in the left and right hemispheres.

Each lobe controls the operations on opposite sides of the body: the left hemisphere controls the right side of the body and vice versa.

It is believed the left frontal lobe is the most dominant lobe and works predominantly with language, logical thinking, and analytical reasoning.

The right frontal lobe, on the other hand, is most associated with non-verbal abilities, creativity, imagination, and musical and art skills.

The frontal lobe, like other structures of the brain, does not always work in isolation from each other. The frontal lobes work alongside other brain regions in order to control a variety of functions.

Substructures

The frontal lobe contains the motor cortex , which is involved in planning and coordinating movement; the prefrontal cortex, which is responsible for higher-level cognitive functioning; and Broca’s area, which is essential for language production.

Prefrontal Cortex

The prefrontal cortex is primarily responsible for the ‘higher’ brain functions of the frontal lobes, including decision-making, problem-solving, intelligence, and emotion regulation.

This area has also been found to be associated with the social skills and personality of humans.

This idea is supported by the famous case study of Phineas Gage , whose personality changed after losing a part of his prefrontal cortex after an iron rod impaled his head.

The frontal cortex has also been shown to be activated when an experience becomes conscious. Different ideas and perceptions are bound together in this region, both of which are necessary for conscious experience.  Concluding that this area may be especially important for consciousness.

Cognitive disorders that have been shown to be linked to this region are attention deficit hyperactivity disorder ( ADHD ), Autism, bipolar disorder, depression , and schizophrenia.

The prefrontal cortex can be further divided into the dorsolateral prefrontal cortex and the orbitofrontal cortex.

Motor and Premotor Cortex

The motor cortex is critical for initiating motor movements, as well as coordinating motor movements, hence why it is called the motor cortex.

Each area of the motor cortex corresponds precisely with specific body parts. For instance, there is an area that controls the left and the right foot.

The premotor cortex is associated with planning and executing motor movements. Within this area, voluntary movement is rehearsed, distinguishing these movements from unconscious reactions.

The premotor cortex has also been shown to be important for imitation learning through the use of mirror neurons.  These neurons essentially allow us to reflect the body language, facial expressions, and emotions of others.

Furthermore, the prefrontal cortex can support cognitive functions of a social kind, such as showing empathy.

Broca’s Area

Another region of the frontal lobes worth mentioning is Broca’s area . This region is located in the dominant hemisphere of the frontal lobes, which is the left side for around 97% of humans.

This region is associated with the production of speech and written language, as well as with the processing and comprehension of language.

The name is taken from the French scientist Paul Broca, whose work with language-impaired patients led him to conclude that we speak with our left brains.

Language differences in those with Autism may be correlated to differences in the structure and function of Broca’s area (Bauman & Kemper, 2005).

As the frontal lobes are situated at the front of the brain and are large in size, this makes them more susceptible to damage. This area is the most common for traumatic brain injuries, with damage to this region causing a variety of symptoms.

Below is a list of symptoms that may occur if an individual has experienced damage within their frontal lobe:

  • Changes in mood
  • Attention deficits
  • Atypical social skills
  • Difficulty problem-solving
  • Lack of impulse control/ risk-taking
  • Loss of spontaneity in social interactions
  • Reduced motivation
  • Impaired judgment
  • Reduced creativity

Damage to Broca’s area, in particular, has been shown to affect the ability to speak, understand language, and produce coherent sentences.

One of the most famous case studies associated with frontal lobe damage is the case of Phineas Gage . He was a railway construction worker who suffered an unfortunate accident when a metal rod impaled his brain in the frontal region.

Gage survived this accident but was said to have experienced some personality changes because of the trauma. Before the accident, Gage was described as a ‘well-balanced’ and smart, energetic person.

After his accident, he was described as being childlike in his intellectual capacities and had a loss of social inhibition (behaving in ways that were considered socially inappropriate).

This case study implies that the frontal lobes are essential to our personalities, intelligence, and social skills. As well as trauma to the head is a cause of damage to the frontal lobes, there are many other causes that can lead to damage.

For instance, a brain tumor, stroke, or infection can cause deficits in this lobe. Similarly, conditions such as cerebral palsy, Huntington’s disease, dementia, or other neurodegenerative diseases can lead to associated damage.

If someone is suspected of having frontal lobe damage, there are methods to diagnose this. Magnetic resonance imaging (MRI) and computerized tomography (CT) scans can detect some differences in the frontal lobes after suffering a stroke or infection, as well as be able to detect dementia.

Also, neuropsychological evaluations can be completed to test for areas such as speech comprehension, social behavior, memory, problem-solving, and impulse control, among others.

One common test to establish frontal lobe damage is the Wisconsin Card Sorting task. Within this task, individuals will be shown cards of varying sorts, such as some having symbols, numbers, different shapes, and colors on them.

They will then be asked to sort the cards by a certain criterion, which will then change throughout the test. Those who have damage to a certain part of the frontal lobes may struggle with this task and will not adjust to new sorting criteria. They will stick with the original criteria (this is called perseveration).

Other tests worth noting as finger tapping tests, to test for motor skill ability, and the Token Test, which tests for language skills.

To be able to treat frontal lobe damage, occupational, speech, and physical therapy can be helpful for rehabilitating these lost or damaged skills.

Finally, a talking therapy called cognitive behavioral therapy (CBT) is common for working on regulating emotions and aiding impulse behaviors.

CBT may not fully treat physical damage to the frontal lobes, but it can help those with impairments cope and manage their symptoms.

Research Studies

  • Semmes, Weinstein, Ghent & Teuber (1963) suggested that the frontal lobes played a part in spatial orientation, particularly our body’s orientation in space.
  • Eslinger & Grattan (1993) investigated damage to the prefrontal cortex. They suggested that people with damage to this area may not have problems with word comprehension or identifying objects by their names, but if asked to say or write as many words as possible or describe as many uses of an object, they would find this task difficult. This shows that damage to one area associated with language does not impair all aspects of language.
  • Kolb & Milner (1981) discussed the involvement of the frontal lobes in facial expressions. They found that patients with frontal lobe damage had difficulty expressing spontaneous facial expressions and would also show fewer facial movements spontaneously.
  • Kaufman, Geyer & Milstein (2017) reported that patients who suffered damage to their frontal lobes had changes to their personalities.
  • It was found that these patients developed an abrupt, suspicious, and sometimes even argumentative manner.
  • Some patients were reported to have displayed ‘emotional incontinence,’ whereby they would have bouts of pathological laughing or crying.
  • Walker & Blummer (1975) found that damage to the frontal lobes resulted in displays of abnormal sexual behavior in the orbital region and reduced sexual interest if the dorsolateral region was damaged.
  • Stuss et al. (1992) found that damage to certain areas of the frontal lobes resulted in ‘bland’ personalities. These patients also displayed fewer signs of distress in emotionally heightened situations.
  • Catani et al. (2016) investigated the brains of people with Autism and found support for the hypothesis that Autism is associated with different connectivity in the frontal lobe region compared with neurotypical individuals.
  • Mubarik & Tohid (2016) conducted a literature review of studies that investigated the frontal lobes of those with schizophrenia.
  • They found that many people with schizophrenia have differences in the structure of white matter , grey matter , and functional activity in their frontal lobes compared to those without the condition.

Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: a review and future directions. International Journal of Developmental Neuroscience, 23 (2-3), 183-187.

Catani, M., Dell’Acqua, F., Budisavljevic, S., Howells, H., Thiebaut de Schotten, M., Froudist-Walsh, S., … & Murphy, D. G. (2016). Frontal networks in adults with autism spectrum disorder. Brain, 139 (2), 616-630.

Eslinger, P. J., & Grattan, L. M. (1993). Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsychologia, 31 (1), 17-28.

Kaufman, D. M., Geyer, H. L., & Milstein, M. J. (2017). Chapter 21-neurotransmitters and drug abuse. Kaufman’s Clinical Neurology for Psychiatrists . 8th ed. Amsterdam: Elsevier, 495-517.

Kolb, B., & Milner, B. (1981). Performance of complex arm and facial movements after focal brain lesions. Neuropsychologia, 19( 4), 491-503.

Mubarik, A., & Tohid, H. (2016). Frontal lobe alterations in schizophrenia: a review. Trends in Psychiatry and Psychotherapy , 38(4), 198-206.

Semmes, J., Weinstein, S., GHENT, G., Meyer, J. S., & Teuber, H. L. (1963). Correlates of impaired orientation in personal and extrapersonal space. Brain, 86 (4), 747-772.

Stuss, D. T., Ely, P., Hugenholtz, H., Richard, M. T., LaRochelle, S., Poirier, C. A., & Bell, I. (1985). Subtle neuropsychological deficits in patients with good recovery after closed head injury. Neurosurgery, 17 (1), 41-47.

Walker, A. E., & Blumer, D. (1975). The localization of sex in the brain. In Cerebral localization (pp. 184-199). Springer, Berlin, Heidelberg.

frontal lobe in the human brain

Related Articles

Summary of the Cranial Nerves

Biopsychology

Summary of the Cranial Nerves

Parts of the Brain: Anatomy, Structure & Functions

Parts of the Brain: Anatomy, Structure & Functions

Amygdala: What It Is & Its Functions

Amygdala: What It Is & Its Functions

Autonomic Nervous System (ANS): What It Is and How It Works

Autonomic Nervous System (ANS): What It Is and How It Works

Biological Approach In Psychology

Biopsychology , Psychology

Biological Approach In Psychology

Ventricles of the Brain

Ventricles of the Brain

  • Brain Development
  • Childhood & Adolescence
  • Diet & Lifestyle
  • Emotions, Stress & Anxiety
  • Learning & Memory
  • Thinking & Awareness
  • Alzheimer's & Dementia
  • Childhood Disorders
  • Immune System Disorders
  • Mental Health
  • Neurodegenerative Disorders
  • Infectious Disease
  • Neurological Disorders A-Z
  • Body Systems
  • Cells & Circuits
  • Genes & Molecules
  • The Arts & the Brain
  • Law, Economics & Ethics
  • Neuroscience in the News
  • Supporting Research
  • Tech & the Brain
  • Animals in Research
  • BRAIN Initiative
  • Meet the Researcher
  • Neuro-technologies
  • Tools & Techniques

Core Concepts

  • For Educators
  • Ask an Expert
  • The Brain Facts Book

BrainFacts.org

Mapping the Brain

  • Published 1 Apr 2012
  • Reviewed 1 Apr 2012
  • Source BrainFacts/SfN

The cerebrum, the largest part of the human brain, is associated with higher order functioning, including the control of voluntary behavior. Thinking, perceiving, planning, and understanding language all lie within the cerebrum’s control.

The top image shows the four main sections of the cerebral cortex: the frontal lobe, the parietal lobe, the occipital lobe, and the temporal lobe. Functions such as movement are controlled by the motor cortex, and the sensory cortex receives information on vision, hearing, speech, and other senses. The bottom image shows the location of the brain's major internal structures.

The top image shows the four main sections of the cerebral cortex: the frontal lobe, the parietal lobe, the occipital lobe, and the temporal lobe. Functions such as movement are controlled by the motor cortex, and the sensory cortex receives information on vision, hearing, speech, and other senses. The bottom image shows the location of the brain's major internal structures.

The cerebrum is divided into two hemispheres — the right hemisphere and the left hemisphere. Bridging the two hemispheres is a bundle of fibers called the corpus callosum. The two hemispheres communicate with one another across the corpus callosum.

Covering the outermost layer of the cerebrum is a sheet of tissue called the cerebral cortex. Because of its gray color, the cerebral cortex is often referred to as gray matter. The wrinkled appearance of the human brain also can be attributed to characteristics of the cerebral cortex. More than two-thirds of this layer is folded into grooves. The grooves increase the brain’s surface area, allowing for inclusion of many more neurons.

The function of the cerebral cortex can be understood by dividing it somewhat arbitrarily into zones, much like the geographical arrangement of continents.

The frontal lobe is responsible for initiating and coordinating motor movements; higher cognitive skills, such as problem solving, thinking, planning, and organizing; and for many aspects of personality and emotional makeup.

The parietal lobe is involved with sensory processes, attention, and language. Damage to the right side of the parietal lobe can result in difficulty navigating spaces, even familiar ones. If the left side is injured, the ability to understand spoken and/or written language may be impaired.

The occipital lobe helps process visual information, including recognition of shapes and colors.

The temporal lobe helps process auditory information and integrate information from the other senses. Neuroscientists also believe that the temporal lobe has a role to play in short-term memory through its hippocampal formation, and in learned emotional responses through its amygdala.

All of these structures make up the forebrain. Other key parts of the forebrain include the basal ganglia, which are cerebral nuclei deep in the cerebral cortex; the thalamus; and the hypothalamus. The cerebral nuclei help coordinate muscle movements and reward useful behaviors; the thalamus passes most sensory information on to the cerebral cortex after helping to prioritize it; and the hypothalamus is the control center for appetites, defensive and reproductive behaviors, and sleep-wakefulness.

The midbrain consists of two pairs of small hills called colliculi. These collections of neurons play a critical role in visual and auditory reflexes and in relaying this type of information to the thalamus. The midbrain also has clusters of neurons that regulate activity in widespread parts of the central nervous system and are thought to be important for reward mechanisms and mood.

The hindbrain includes the pons and the medulla oblongata, which control respiration, heart rhythms, and blood glucose levels.

Another part of the hindbrain is the cerebellum which, like the cerebrum, also has two hemispheres. The cerebellum’s two hemispheres help control movement and cognitive processes that require precise timing, and also play an important role in Pavlovian learning.

The spinal cord is the extension of the brain through the vertebral column. It receives sensory information from all parts of the body below the head. It uses this information for reflex responses to pain, for example, and it also relays the sensory information to the brain and its cerebral cortex. In addition, the spinal cord generates nerve impulses in nerves that control the muscles and the viscera, both through reflex activities and through voluntary commands from the cerebrum.

CONTENT PROVIDED BY

BrainFacts/SfN

Also In Anatomy

The Dancing Brain

Popular articles on BrainFacts.org

https://www.brainfacts.org/-/media/Brainfacts2/Diseases-and-Disorders/Mental-Health/Article-Images/Depression-and-Memory-Thumbnail.png

BrainFacts Book

Download a copy of the newest edition of the book, Brain Facts: A Primer on the Brain and Nervous System.

A beginner's guide to the brain and nervous system.

Educator Resources

Explain the brain to your students with a variety of teaching tools and resources.

Facebook

SUPPORTING PARTNERS

Dana Foundation logo

  • Privacy Policy
  • Accessibility Policy
  • Terms and Conditions
  • Manage Cookies

Some pages on this website provide links that require Adobe Reader to view.

ASU for You, learning resources for everyone

  • News/Events
  • Arts and Sciences
  • Design and the Arts
  • Engineering
  • Global Futures
  • Health Solutions
  • Nursing and Health Innovation
  • Public Service and Community Solutions
  • University College
  • Thunderbird School of Global Management
  • Polytechnic
  • Downtown Phoenix
  • Online and Extended
  • Lake Havasu
  • Research Park
  • Washington D.C.
  • Biology Bits
  • Bird Finder
  • Coloring Pages

Experiments and Activities

  • Games and Simulations
  • Quizzes in Other Languages
  • Virtual Reality (VR)
  • World of Biology
  • Meet Our Biologists
  • Listen and Watch
  • PLOSable Biology
  • All About Autism
  • Xs and Ys: How Our Sex Is Decided
  • When Blood Types Shouldn’t Mix: Rh and Pregnancy
  • What Is the Menstrual Cycle?
  • Understanding Intersex
  • The Mysterious Case of the Missing Periods
  • Summarizing Sex Traits
  • Shedding Light on Endometriosis
  • Periods: What Should You Expect?
  • Menstruation Matters
  • Investigating In Vitro Fertilization
  • Introducing the IUD
  • How Fast Do Embryos Grow?
  • Helpful Sex Hormones
  • Getting to Know the Germ Layers
  • Gender versus Biological Sex: What’s the Difference?
  • Gender Identities and Expression
  • Focusing on Female Infertility
  • Fetal Alcohol Syndrome and Pregnancy
  • Ectopic Pregnancy: An Unexpected Path
  • Creating Chimeras
  • Confronting Human Chimerism
  • Cells, Frozen in Time
  • EvMed Edits
  • Stories in Other Languages
  • Virtual Reality
  • Zoom Gallery
  • Ugly Bug Galleries
  • Ask a Question
  • Top Questions
  • Question Guidelines
  • Permissions
  • Information Collected
  • Author and Artist Notes
  • Share Ask A Biologist
  • Articles & News
  • Our Volunteers
  • Teacher Toolbox

Question icon

show/hide words to know

Disorder: something that is not in order. Not arranged correctly. In medicine a disorder is when something in the body is not working correctly.

Electroencephalogram: visual recording showing the electrical activity of the brain (EEG)...  more

Emotion: any of a long list of feelings a person can have such as joy, anger and love...  more

What Are the Regions of the Brain and What Do They Do?

The brain has many different parts . The brain also has specific areas that do certain types of work. These areas are called lobes. One lobe works with your eyes when watching a movie. There is a lobe that is controlling your legs and arms when running and kicking a soccer ball. There are two lobes that are involved with reading and writing. Your memories of a favorite event are kept by the same lobe that helps you on a math test. The brain is controlling all of these things and a lot more. Use the map below to take a tour of the regions in the brain and learn what they control in your body.

The brain is a very busy organ. It is the control center for the body. It runs your organs such as your heart and lungs. It is also busy working with other parts of your body. All of your senses  –  sight, smell, hearing, touch, and taste  –  depend on your brain. Tasting food with the sensors on your tongue is only possible if the signals from your taste buds are sent to the brain. Once in the brain, the signals are decoded. The sweet flavor of an orange is only sweet if the brain tells you it is.

Brain Waves

EEG recording net

How do you tell if the brain is working? What is it doing and how do you measure it? The head gear on the right that looks like it's from a work of science fiction measures electrical activity in the brain. These electrical waves are called brain waves.

When neurons send a signal they use electrical currents to pass messages to other nearby neurons. Just one or two neurons signaling is too small a change to be noticed. When a huge group of neurons signal at once, however, they can be recorded and measured with the help of special tools.

Measuring electrical activity in the brain is usually done with electrodes. Electrodes are devices able to record electrical changes over time. These are attached to the surface of the skin in specific places around the head. Recordings of brain wave activity look like a series of waves. These are called electroencephalograms, or EEGs for short.

Measuring activity in the brain can be a very useful tool in scientific studies. They can also be used to help identify sleeping disorders and other medical conditions relating to the brain.

First EEG recording.

The first human electroencephalogram, recorded in 1924 by Hans Berger.

Computer animation credit: BodyParts3D, Copyright© 2010 The Database Center for Life Science licensed under CC Attribution-Share Alike 2.1 Japan.

Read more about: A Nervous Journey

View citation, bibliographic details:.

  • Article: What's Your Brain Doing?
  • Author(s): Brett Szymik
  • Publisher: Arizona State University School of Life Sciences Ask A Biologist
  • Site name: ASU - Ask A Biologist
  • Date published: May 9, 2011
  • Date accessed: May 15, 2024
  • Link: https://askabiologist.asu.edu/brain-regions

Brett Szymik. (2011, May 09). What's Your Brain Doing?. ASU - Ask A Biologist. Retrieved May 15, 2024 from https://askabiologist.asu.edu/brain-regions

Chicago Manual of Style

Brett Szymik. "What's Your Brain Doing?". ASU - Ask A Biologist. 09 May, 2011. https://askabiologist.asu.edu/brain-regions

MLA 2017 Style

Brett Szymik. "What's Your Brain Doing?". ASU - Ask A Biologist. 09 May 2011. ASU - Ask A Biologist, Web. 15 May 2024. https://askabiologist.asu.edu/brain-regions

Computer animation image of the human brain. The colors show the frontal lobe (red), parietal lobe (orange), temporal lobe (green), and occipital lobe (yellow).

A Nervous Journey

more bio bits

Coloring Pages and Worksheets

Neuron Anatomy

What's In Your Brain

What's Your Brain Doing?

Puzzles Pages

Be Part of Ask A Biologist

By volunteering, or simply sending us feedback on the site. Scientists, teachers, writers, illustrators, and translators are all important to the program. If you are interested in helping with the website we have a Volunteers page to get the process started.

Share to Google Classroom

Coronavirus (COVID-19): Latest Updates | Visitation Policies Visitation Policies Visitation Policies Visitation Policies Visitation Policies | COVID-19 Testing | Vaccine Information Vaccine Information Vaccine Information

Health Encyclopedia

Anatomy of the brain, what is the central nervous system (cns).

The CNS consists of the brain and spinal cord. The brain is an important organ that controls thought, memory, emotion, touch, motor skills, vision, breathing, temperature, hunger, and every process that regulates our body. The brain determines your personality and how you interact with the environment, including other people. This defines who you are.

What are the different parts of the brain?

Side view cross section of brain in male head showing cerebrum, cerebellum, and brainstem.

The brain can be divided into the cerebrum, brainstem, and cerebellum:

Cerebrum. This is the front of the brain. It is made up of the right and left hemispheres, which are joined by the corpus callosum. The cerebrum controls: initiation of movement, coordination of movement, temperature, touch, vision, hearing, judgment, reasoning, problem solving, emotions, and learning. The cerebrum is responsible for communication (speaking and writing), memory, abstract thought, and appreciation for music and art.

Brainstem. This is the middle of the brain. It includes the midbrain, the pons, and the medulla. The brainstem controls movement of the eyes, face, and mouth. It also relays sensory messages (such as hot, pain, and loud) and controls respirations, consciousness, cardiac function, involuntary muscle movements, sneezing, coughing, vomiting, and swallowing.

Cerebellum. This is the back of the brain. It coordinates voluntary muscle movements and helps to maintain posture, balance, and equilibrium.

More specifically, other parts of the brain include the following:

Pons. A deep part of the brain, located in the brainstem, the pons contains many of the control areas for eye and face movements.

Medulla. The lowest part of the brainstem, the medulla is the most vital part of the entire brain and contains important control centers for the heart and lungs.

Spinal cord. A large bundle of nerve fibers located in the back that extends from the base of the brain to the lower back, the spinal cord carries messages to and from the brain and the rest of the body.

Frontal lobe. The largest section of the brain located in the front of the head, the frontal lobe is involved in personality characteristics and movement. Recognition of smell often involves parts of the frontal lobe.

Parietal lobe. The middle part of the brain, the parietal lobe helps a person to identify objects and understand spatial relationships (where one's body is compared to objects around the person). The parietal lobe is also involved in interpreting pain and touch in the body.

Occipital lobe. This is the back part of the brain that is involved with vision.

Temporal lobe. The sides of the brain, these temporal lobes are involved in short-term memory, speech, musical rhythm, and some degree of smell recognition. The temporal lobes are also important in understanding sound and voice.

Medical Reviewers:

  • Anne Fetterman RN BSN
  • Joseph Campellone MD
  • Raymond Kent Turley BSN MSN RN
  • Ask a Medical Librarian Make an Appointment Physicians & Services Physicians who treat Neurological conditions

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

Cover of StatPearls

StatPearls [Internet].

Anatomy, central nervous system.

Lauren Thau ; Vamsi Reddy ; Paramvir Singh .

Affiliations

Last Update: October 10, 2022 .

  • Introduction

The nervous system subdivides into the central nervous system and the peripheral nervous system. The central nervous system is the brain and spinal cord, while the peripheral nervous system consists of everything else. The central nervous system's responsibilities include receiving, processing, and responding to sensory information. See Image.  Peripheral and Central Nervous Systems. 

The brain is an organ of nervous tissue that is responsible for responses, sensation, movement, emotions, communication, thought processing, and memory. Protection for the human brain comes from the skull, meninges, and cerebrospinal fluids. The nervous tissue is extremely delicate and can suffer damage by the smallest amount of force. In addition, it has a blood-brain barrier preventing the brain from any harmful substance that could be floating in the blood.

The spinal cord is a vital aspect of the CNS found within the vertebral column. The purpose of the spinal cord is to send motor commands from the brain to the peripheral body as well as to relay sensory information from the sensory organs to the brain. Spinal cord protection is by bone, meninges, and cerebrospinal fluids.

  • Structure and Function

The brain is broken up into two hemispheres, the left, and the right. While they are in constant communication, the left and right hemisphere are responsible for different behaviors, known as brain lateralization. The left hemisphere is more dominant with language, logic, and math abilities. The right hemisphere is more creative, being dominant in artistic and musical situations, and intuition. 

Cerebral cortex:  The cerebral cortex is the outermost layer that surrounds the brain. It is composed of gray matter and filled with billions of neurons used to conduct high-level executive functions. The cortex divides into four lobes; frontal, parietal, occipital, and temporal by different sulci. [1] The frontal lobe, located anteriorly to the central sulcus, is responsible for voluntary motor function, problem-solving, attention, memory, and language. Located in the frontal lobe are the motor cortex and the Broca area. The motor cortex allows for the precise voluntary movements of our skeletal muscles, while the Broca area controls motor functions responsible for producing language. The parietal lobe is separated from the occipital lobe by the parieto-occipital sulcus and is behind the central sulcus. It is responsible for processing sensory information and contains the somatosensory cortex. Neurons in the parietal lobe receive information from sensory and proprioceptors throughout the body, process the can, and form an understanding about what is being touched based on previous knowledge. The occipital lobe, known as the visual processing center, contains the visual cortex. Similar to the parietal lobe, the occipital lobe receives information from the retina and then uses past visual experiences to interpret and recognize the stimuli. Lastly, the temporal lobe processes auditory stimuli through the auditory cortex. Mechanoreceptors located in the hair cells lining the cochlea are activated by sound energy, which in turn sends impulses to the auditory cortex. The impulse is processed and stored based on previous experiences. The Wernicke area is in the temporal lobe and functions in speech comprehension. 

Basal nuclei : The basal nuclei, also known as basal ganglia, is located deep within the cerebral white matter and is composed of the caudate nucleus, putamen, and globus pallidus. These structures form the pallidum and striatum. The basal ganglia are responsible for muscle movements and coordination. [2]

Thalamus: The thalamus is the relay center of the brain. It receives afferent impulses from sensory receptors located throughout the body and processes the information for distribution to the appropriate cortical area. It is also responsible for regulating consciousness and sleep.

Hypothalamus: While the hypothalamus is one of the smallest parts of the brain, it is vital to maintaining homeostasis. The hypothalamus connects the central nervous system to the endocrine system. It is responsible for heart rate, blood pressure, appetite, thirst, temperature, and the release of various hormones. The hypothalamus also communicates with the pituitary gland to release or inhibit antidiuretic hormone, corticotropin-releasing hormone, gonadotropin-releasing hormone, growth hormone-releasing hormone, prolactin inhibiting hormone, thyroid releasing hormone, and oxytocin. [3]

Pons : Found in the brainstem, the pons connects the medulla oblongata and the thalamus. It is composed of tracts responsible for relaying impulses from the motor cortex to the cerebellum, medulla, and thalamus.

Medulla oblongata : The medulla oblongata is at the bottom of the brain stem, where the spinal cord meets the foramen magnum of the skull. It is responsible for autonomic functions, some of which are crucial for survival. The medulla oblongata monitors the bodies respiratory system using chemoreceptors. These receptors are able to detect changes in blood chemistry. For example, if the blood is too acidic, the medulla oblongata will increase the respiratory rate allowing for more oxygen to reach the blood. [4] It is also a cardiovascular and vasomotor center. The medulla oblongata can regulate the body's blood pressure, pulse, and cardiac contractions based on the body’s needs. Lastly, it controls reflexes like vomiting, swallowing, coughing, and sneezing.

Cerebellum: The cerebellum, also known as the little brain, is responsible for smooth, coordinated voluntary movements. It subdivides into three lobes: the anterior, posterior, and flocculonodular lobes. The cerebellum contains a cerebellar circuit, using Purkinje cells and cerebellar peduncles to communicate to other parts of the brain. The superior cerebellar peduncle is composed of white matter that connects the cerebellum to the midbrain and allows for coordination in the arms and legs. The inferior cerebellar peduncle connects the medulla and cerebellum using proprioceptors to maintain balance and posture. Lastly, the middle cerebellar peduncle is used as a one-way communication method from the pons to the cerebellum. It is mostly composed of afferent fibers that alert the cerebellum about voluntary motor actions. The cerebellum is in constant communication with the cerebral cortex, taking higher-level instructions about the brain’s intentions, processing them through the cerebellar cortex, then sending messages to the cerebral motor cortex to make voluntary muscle contractions. These contractions are calculated to determine the force, direction, and momentum necessary to ensure each contraction is smooth and coordinated.

Limbic System: The limbic system is composed of the piriform cortex, hippocampus, septal nuclei, amygdala, nucleus accumbens, hypothalamus, and anterior nuclei of the thalamus. [5]  The fornix and fiber tracts connect the limbic system parts allowing them to control emotion, memory, and motivation. The piriform cortex is part of the olfactory system and is in the cortical area of the limbic system. The hypothalamus receives most of the limbic output, which explains psychosomatic illnesses, where emotional stressors cause somatic symptoms. For example, a patient who is currently having financial struggles might present to his primary care physician with hypertension and tachycardia. The septal nuclei, amygdala, and nucleus accumbens are found in the subcortical areas and are responsible for pleasure, emotional processing, and addiction, respectively.

Reticular formation: Reticular formation is an extensive network of pathways containing neurons that begins in the brainstem and travels from the top of the midbrain to the medulla oblongata. These pathways have projecting reticular neurons that affect the cerebral cortex, cerebellum, thalamus, hypothalamus, and spinal cord. The reticular formation controls the body's level of consciousness through the reticular activation system, also known as RAS. Sensory axons, found in visual, auditory, and sensory impulses, activate RAS neurons in the brain stem. These neurons then relay information to the thalamus and cerebrum. Continuous stimulation of the RAS neurons causes the cerebrum to stay in an aroused state; this gives the feeling of alertness. However, RAS can filter out repetitive, weak stimuli; this prevents the brain from responding to unimportant information, as well as being sensory overloaded.

Spinal cord: The spinal cord proper extends from the foramen magnum of the skull to the first or second lumbar vertebrae. It creates a two-way pathway between the brain and the body and divides into four regions -  cervical, thoracic, lumbar, and sacral. These regions are then broken down into 31 segments with 31 pairs of spinal nerves. There are 8 cervical nerves, 12 thoracic nerves, 5 lumbar nerves, 5 sacral nerves, and 1 coccygeal nerve. Each nerve exits the vertebral column passing through the intervertebral foramina and to its designated location in the body.

Due to cervical and lumbar enlargements, the spinal cord differs in width throughout its structure. The cervical enlargement occurs at C3 to T1, and the lumbar enlargement is at L1 to S2. The white matter is present on the outside of the spinal cord, with gray matter located in its core and cerebrospinal fluid in the central canal. The gray commissure, the dorsal, lateral, and ventral horns are all composed of gray matter. The gray commissure surrounds the central canal. The dorsal horns are made of interneurons, while the ventral horns are somatic motor neurons. Afferent neurons in the dorsal roots carry impulses from the body’s sensory receptors to the spinal cord, where the information begins to be processed. The ventral horns contain efferent motor neurons, which control the body's periphery. The axons of motor neurons are found in the body's skeletal and smooth muscle to regulate both involuntary and voluntary reflexes.   

The spinal cord ends in a cone-shaped structure called conus medullaris and is supported to the end of the coccyx by the filum terminale. Ligaments are found throughout the spinal column, securing the spinal cord from top to bottom.

Ascending pathway to the brain: Sensory information travels from the body to the spinal cord before reaching the brain. This information ascends upwards using first, second, and third-order neurons. First-order neurons receive impulses from skin and proprioceptors and send them to the spinal cord. They then synapse with second-order neurons. Second-order neurons live in the dorsal horn and send impulses to the thalamus and cerebellum. Lastly, third-order neurons pick up these impulses in the thalamus and relay it to the somatosensory portion of the cerebrum. Somatosensory sensations are pressure, pain, temperature, and the body's senses. 

Descending pathway: Descending tracts send motor signals from the brain to lower motor neurons. These efferents neurons then produce muscle movement. [6]

The adult brain and spinal cord begin to form during week 3 of embryological development. The ectoderm begins to thicken, forming the neural plate. The neutral place then folds inwards, creating the neural groove. Neural folds that migrate laterally flank the neural groove. The neural groove then develops into the neural tube, which forms the CNS structures.  

The neural tube gets separated into an anterior and posterior end. The anterior end forms the primary brain vesicles, prosencephalon (forebrain), mesencephalon (midbrain), and rhombencephalon (hindbrain), while the posterior end becomes the spinal cord. The primary brain vesicles continue to differentiate, creating secondary brain vesicles. The forebrain separates to form the telencephalon and diencephalon, and the hindbrain splits to form the metencephalon and the myelencephalon (spinal brain). [7] The midbrain does not divide and stays the mesencephalon. The development of the secondary brain vesicles produces the adult brain structures

  • Telencephalon to cerebrum
  • Diencephalon to hypothalamus, thalamus, retina
  • Mesencephalon to the brain stem (midbrain)
  • Metencephalon to the brain stem (pons), cerebellum
  • Myelencephalon to the brain stem (medulla oblongata)

The central part of the neural tube forms continuous, hollow cavities known as ventricles. During month 6 of gestation, the cerebral cortex changes from a smooth to wrinkled, convoluted appearance; this is due to the continued growth of the cerebral hemispheres. The elevated parts of the ridges are gyri, while the grooves have the name sulci. The convolutions allow for the increased surface area of the brain to fit within the skull. Throughout the brain, there are areas of white and gray matter. The gray matter contains neuronal cell bodies, dendrites, glia, and unmyelinated neurons. Contrary, white matter is composed of myelinated axons. [7]

The spinal cord, formed from the caudal portion of the neural tube, is composed of both gray and white matter. At 6 weeks of gestation, the gray matter begins to aggregate, forming the dorsal alar plate and ventral basal plate. Interneurons form from the alar plate, while motor neurons form from the basal plate. Dorsal root ganglia, which brings information from the periphery to the spinal cord, arise for the neural crest cells.

  • Blood Supply and Lymphatics

Due to the importance and delicate nature of the central nervous system, the body closely monitors the blood traveling to and from it. The cardiovascular system ensures continuous, oxygenated blood as a drop-in oxygenation level can be detrimental. The common carotid arteries branch off of the aorta, which carries oxygen-rich blood from the heart for distribution. The common carotid further branches into right and left internal and external carotid arteries, which supply the cranium with blood. Vertebral arteries begin in the neck and branch as they enter into the skull through the foramen magnum. They supply the anterior portion of the spinal cord. The vertebral arteries then merge into the basilar artery. The basilar artery is responsible for delivering blood to the brainstem and cerebellum. The circle of Willis ensures that blood will continue to circulate even if one of the arteries is not working appropriately. The internal carotid and vertebral arteries compose the circle of Willis. [8] After being used in the CNS, blood then travels back to the lungs for oxygenation. Multiple dural venous sinuses do this:

  • Superior sagittal sinus
  • The confluence of sinuses
  • Transverse sinuses
  • Sigmoid sinuses
  • Jugular veins
  • Carotid arteries
  • Superior vena cava
  • Surgical Considerations

Anesthesia is a controlled state of temporary loss of sensation that allows the performance of painful medical procedures that would otherwise be unfeasible. There are many types of anesthesia, such as general, sedation, and local. However, they are all used to disrupt the cellular and intracellular communication in the central and peripheral nervous system.

General anesthesia involves the use of an analgesic, paralytic, and amnesia, which all work together to render the patient unconscious. Under general anesthesia, the activity of the central nervous system undergoes complete suppression, and there is a total loss of sensation. Neuromuscular blockers are used, requiring intubation and subsequent mechanical ventilation. Depolarizing neuromuscular blockers, such as succinylcholine, binds to the postsynaptic cholinergic receptors causing depolarization. However, the removal of succinylcholine from the receptors is much slower, which inhibits the binding of acetylcholine and therefore, prevents future depolarizations. Non-depolarizing neuromuscular blockers, like vecuronium, act as an acetylcholine inhibitor blocking the postsynaptic cholinergic receptors. However, when these neuromuscular blockers bind, they do not change the permeability of the ion channels. [9]

During regional anesthesia, the anesthesiologist numbs only the portion of the body that is the target of the operation. Spinal and epidurals are used as a local anesthetic medication and get injected into the vertebral canal. Spinal anesthesia targets the spinal fluid, while the epidural injection is into the epidural space. 

As with any surgical procedures, there is always a risk when going under anesthesia. Conditions that increase the risk of having a complication are obesity, diabetes, hypertension, and any disease process of the respiratory and cardiovascular system. [10]

Neurosurgeons have received training in the diagnosis and treatment of patients with injuries or diseases affecting the central nervous system. They provide operative management of neurological disorders, such as tumors, stroke, head, and spinal injuries, chronic pain, etc. Any surgical procedures have risks, especially when dealing with delicate nervous tissue in the brain and spinal cord. Complications of brain surgery, including bleeding in the brain, speech, memory, coordination issues, stroke, brain swelling, and possible coma.

  • Clinical Significance

Wernicke aphasia: Wernicke aphasia occurs most commonly as a result of a hemorrhagic or ischemic stroke. Strokes that occur in the left middle cerebral artery prevent oxygenated blood from reaching the Wernicke area. In Wernicke aphasia, a person can speak clearly and produce speech. However, their speech has no meaning. They have difficulty understanding language. 

Broca aphasia: Broca aphasia, also known as expressive aphasia, is caused by a stroke, brain tumor, or brain trauma. When a stroke occurs in the Broca area, oxygen is cut off to that part of the brain. The hypoxia causes irreversible damage. During Broca aphasia, the person has difficulty producing speech. They can comprehend and know what they want to say; however, they are unable to form the words to communicate the message. [11]

Traumatic brain injuries: Traumatic brain injuries (TBI) occur when there is a disruption to normal brain activity, which can occur during a sports injury, a car accident, by a penetrating object, or even a blunt object. TBI symptoms can vary depending on the severity of the injury. For example, a concussion can cause temporary dizziness or loss of consciousness, while a contusion causes lasting neurological damage. Contusions to the brain stem resulting in a coma. TBI can cause subdural or subarachnoid hemorrhage and cerebral edema. When the brain sustains a trauma, the blood vessels in the brain break. The blood begins to pool, increasing the intracranial pressure, and compressing the brain tissue. As the brain pushes through the skull onto the spinal cord, autonomic nervous system functions are lost.

Cerebrovascular Accidents: Cerebrovascular accidents, also known as strokes, occur when the brain is not able to get oxygenated blood. The lack of oxygen causes hypoxia, and tissues in the brain start to die. Commonly, strokes are caused by a blood clot that has traveled from one location in the body to the cerebral artery in the brain. Dependent on where the clot lands, determine the symptoms of the stroke. For example, some people may experience left-sided paralysis, while others might have slurred speech. Transient ischemic attacks are considered small strokes as their symptoms are more temporary. In any CVA, time is crucial. If necessary, doctors can administer tissue plasminogen activator which breaks down the clot or can surgically remove it. The severity of symptoms directly correlates to how long the brain’s oxygen supply has been cut off.

Alzheimer's disease: Alzheimer's disease (AD) is a common type of dementia in which one’s brain cells and neural connections begin to degenerate and die. This condition presents with loss of memory and cognitive decline. Alzheimer's is progressive, with symptoms worsening over time. [12] Scientists have found aggregations of beta-amyloid plaques and neurofibrillary tangles made of tau within the neurons in AD patients. These plaques and tangles result in the death of brain cells and form because of the misfolding of proteins within them. AD patients have a decrease in neural activity in the parietal cortex, hippocampus, and basal forebrain.

Parkinson's disease: Parkinson's disease is a nervous system disorder that results in the deterioration of dopamine-releasing neurons in the substantia nigra. [13] The drop-in dopamine levels create tremors, unsteady movements, and loss of balance. Parkinson's disease is progressive as it usually starts as a tremor in one hand. Many patients exhibit a pill-rolling movement in their hand, bradykinesia, stiffness, and a mask life face as symptoms progress. A Parkinson's disease diagnosis results from looking at the patient’s symptoms, medical history, and a neurological and physical exam. While no cure exists for the disease, the severity of the symptoms can be controlled. Levodopa can pass through the blood-brain and undergo conversion into dopamine for CNS use. Deep brain stimulation is a surgical option that can stop the abnormal brain activity and thus control the tremors. However, deep brain stimulation does not keep the disease from progressing.  

Huntington disease: Huntington disease is a hereditary, progressive brain disorder that is caused by a mutation in the huntingtin gene, HTT. The CAG segment in the HTT gene normally repeats up to 35 times. However, in someone with Huntington’s disease, the CAG segment is repeated up to 120 times. This large CAG segment causes the huntingtin protein to accumulate in the brain cells, which eventually leads to cell death. Initially, Huntington disease causes chorea, involuntary jerking, and hand-flapping movements. As the disease progresses, cognitive decline occurs. Fatally follows within 15 years of diagnosis.

Spinal cord traumas: Symptoms of spinal cord injuries is dependent on where the injury occurs. If damage to the sensory tracts occurs, the sensation can be affected. However, if the ventral roots or ventral horns are damaged, paralysis occurs. Flaccid paralysis is when nerve impulses do not reach the intended muscles. Without stimulation, the muscles are unable to contract. Spastic paralysis is when the motor neurons undergo irregular stimulation, causing involuntary contraction. Paraplegia, paralysis of the lower limbs, occurs when the spinal cord gets cut between T1 and L1. Quadriplegia, paralysis of all limbs, is a result of an injury in the cervical region.

Poliomyelitis: Poliomyelitis is an inflammation of the spinal cord due to the virus, Polio. Poliovirus spreads from human to human or through infected food and water. It demolishes the neurons in the ventral horn of the spinal cord leading to paralysis. The infection of the poliovirus is preventable through the administration of the vaccine. [14]

Amyotrophic Lateral Sclerosis: Amyotrophic lateral sclerosis, known also as ALS and Lou Gehrig disease, destroys motor neurons that control voluntary and involuntary movements like breathing, speaking, and swallowing. The cause of ALS is not known, and unfortunately, there is no cure. Scientists believe that cell death is related to the excess amount of extracellular glutamate in ALS patients. Riluzole, which can disrupt the formation of glutamate, is used to slow down the progression and reduce the painful symptoms of ALS.   

Multiple sclerosis: Multiple sclerosis is an autoimmune disease, in which the body attacks the myelin proteins of the central nervous system, disrupting the communication between the brain and the body. MS has a high prevalence in young adults and presents as pain, weakness, vision loss, and loss in coordination. The severity of symptoms varies from patient to patient. Medication is used to suppress the body’s immune system and can help control the adverse effects of this disease.

  • Review Questions
  • Access free multiple choice questions on this topic.
  • Comment on this article.

Peripheral and Central Nervous Systems. Illustration of the peripheral and central nervous systems: brain, spinal cord, and nerves. Contributed by C Rowe

Disclosure: Lauren Thau declares no relevant financial relationships with ineligible companies.

Disclosure: Vamsi Reddy declares no relevant financial relationships with ineligible companies.

Disclosure: Paramvir Singh declares no relevant financial relationships with ineligible companies.

This book is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits others to distribute the work, provided that the article is not altered or used commercially. You are not required to obtain permission to distribute this article, provided that you credit the author and journal.

  • Cite this Page Thau L, Reddy V, Singh P. Anatomy, Central Nervous System. [Updated 2022 Oct 10]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.

In this Page

Bulk download.

  • Bulk download StatPearls data from FTP

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Similar articles in PubMed

  • Anatomy, Back, Spinal Cord Arteries. [StatPearls. 2024] Anatomy, Back, Spinal Cord Arteries. Kaiser JT, Reddy V, Lugo-Pico JG. StatPearls. 2024 Jan
  • Neuroanatomy, Spinal Cord. [StatPearls. 2024] Neuroanatomy, Spinal Cord. Khan YS, Lui F. StatPearls. 2024 Jan
  • Review Applications of Proteomics to Nerve Regeneration Research. [Neuroproteomics. 2010] Review Applications of Proteomics to Nerve Regeneration Research. Massing MW, Robinson GA, Marx CE, Alzate O, Madison RD. Neuroproteomics. 2010
  • Neuroanatomy, Somatic Nervous System. [StatPearls. 2024] Neuroanatomy, Somatic Nervous System. Akinrodoye MA, Lui F. StatPearls. 2024 Jan
  • Review Barrier function in the peripheral and central nervous system-a review. [Pflugers Arch. 2017] Review Barrier function in the peripheral and central nervous system-a review. Reinhold AK, Rittner HL. Pflugers Arch. 2017 Jan; 469(1):123-134. Epub 2016 Dec 12.

Recent Activity

  • Anatomy, Central Nervous System - StatPearls Anatomy, Central Nervous System - StatPearls

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

  • Type 2 Diabetes
  • Heart Disease
  • Digestive Health
  • Multiple Sclerosis
  • Diet & Nutrition
  • Supplements
  • Health Insurance
  • Public Health
  • Patient Rights
  • Caregivers & Loved Ones
  • End of Life Concerns
  • Health News
  • Thyroid Test Analyzer
  • Doctor Discussion Guides
  • Hemoglobin A1c Test Analyzer
  • Lipid Test Analyzer
  • Complete Blood Count (CBC) Analyzer
  • What to Buy
  • Editorial Process
  • Meet Our Medical Expert Board

The Anatomy of the Prefrontal Cortex

Associated conditions, frequently asked questions.

The prefrontal cortex is an important part of your brain. It is at the front of the frontal lobe, which is immediately behind the forehead. It affects your behavior, personality, and ability to plan. This article will explain more about the anatomy, location, and function of the prefrontal cortex.

Eric Raptosh Photography / Getty Images

The prefrontal cortex (PFC) is connected to many other parts of the brain and is able to send and receive information. The prefrontal cortex is divided into these two parts:

  • Medial PFC (mPFC) : It is involved in self-reflection, memory, and emotional processing.
  • Lateral PFC (lPFC) : It is involved in sensory processing, motor control, and performance monitoring.

The prefrontal cortex is involved in many brain functions. One of the most important is executive function , or the ability to self-regulate and plan ahead. Examples of executive function include:

  • Controlling your behavior and impulses 
  • Delaying instant gratification 
  • Regulating your emotions 
  • Making decisions 
  • Solving problems 
  • Making long-term goals 
  • Balancing short-term rewards with future goals 
  • Changing your behavior when situations change 
  • Seeing and predicting the consequences of your behavior 
  • Being able to consider many streams of information 
  • Being able to focus your attention 

The prefrontal cortex also affects your personality. A historical example of what happens when a person’s prefrontal cortex is damaged occurred in the mid-1800s. When railroad worker Phineas Gage’s prefrontal cortex was damaged by a metal rod going through his skull, he survived, but his personality changed. He became impulsive and lost the ability to plan.  

Damage to the prefrontal cortex can happen from: 

  • Brain trauma : Accidents, falls, sports injuries, and physical altercations can cause a traumatic brain injury.
  • Cancer : Cancer originating in the brain (primary tumors) or spreading to the brain from other original sites ( metastatic brain tumors ) can cause damage.
  • Tumors : In addition to cancerous tumors, benign (noncancerous) brain tumors can harm the prefrontal cortex.
  • Stroke : A blocked blood vessel or bleed in the brain can damage the prefrontal cortex.

When the prefrontal cortex is damaged, it may cause the following conditions:  

  • Changes in personality and behavior 
  • Problems with social behavior and an increase in antisocial behavior
  • Higher chance of committing violence or stealing 
  • Problems regulating emotions and impulses 
  • Attention deficit hyperactivity disorder (ADHD) : A neurodevelopmental condition that affects attention, hyperactivity, and impulsiveness
  • Post-traumatic stress disorder (PTSD) : A mental health disorder that affects people after traumatic events  
  • Schizophrenia : A mental health condition that affects a person’s behavior, thoughts, and feelings
  • Bipolar disorder : A condition that causes extreme mood swings 

If you have damage to the prefrontal cortex or another condition that is affecting it, your healthcare provider may start with a physical exam and a mental status exam. These tests will help them evaluate your thinking and rule out other conditions. 

To check your brain, a healthcare provider may order the following tests: 

  • Magnetic resonance imaging (MRI) : Detailed images taken using magnetic fields
  • Computed tomography (CT) scan : A detailed computerized X-ray scan
  • Positron-emission tomography (PET scan) : Imaging that uses a radioactive tracer to look for cells that are active

The prefrontal cortex is found in front of the frontal lobe of the brain. It affects your behavior, personality, and executive function. When the prefrontal cortex is damaged, it can cause changes to how you think and behave. 

A Word From Verywell

It is important to remember that you may not always notice changes in your behavior or thinking. Your friends and loved ones are more likely to point out that something is wrong.

Even if you think everything is fine, it is worth having a conversation with your healthcare provider and checking on your brain health. It is better to catch problems earlier and get treatment. 

Yes, the prefrontal cortex grows as a person matures from childhood to early adulthood. It is one of the last parts of the brain to develop completely.

In general, the prefrontal cortex is considered fully developed by the age of 25. This is why car insurance companies charge higher rates until a person turns 25 because they are high-risk drivers. They explain that the prefrontal cortex is involved in risk-taking and decision-making, which are both important for driving.

A person may lose executive function if the prefrontal cortex is damaged. They may still be able to do some tasks and even work, but they will have trouble planning and controlling their behavior.

Yes, it is possible for a person to survive without a prefrontal cortex. However, not having this portion of the brain will have an enormous impact on their ability to reason, plan ahead, control behavior, and solve problems. A person’s ability to have social relationships would also be affected severely.

Grossmann T. The role of medial prefrontal cortex in early social cognition . Front Hum Neurosci . 2013;7:340. doi:10.3389/fnhum.2013.00340

Arain M, Haque M, Johal L, et al. Maturation of the adolescent brain . Neuropsychiatr Dis Treat . 2013;9:449-461. doi:10.2147/NDT.S39776

Teles RV. Phineas Gage's great legacy . Dement Neuropsychol . 2020;14(4):419-421. doi:10.1590/1980-57642020dn14-040013

Barrash J, Bruss J, Anderson SW, et al. Lesions in different prefrontal sectors are associated with different types of acquired personality disturbances . Cortex. 2022;147:169-184. doi:10.1016/j.cortex.2021.12.004

By Lana Bandoim Bandoim has nearly 20 years of experience writing for a variety of outlets including health sites, scientific publishers, and academic medical centers.

Connection denied by Geolocation Setting.

Reason: Blocked country: Russia

The connection was denied because this country is blocked in the Geolocation settings.

Please contact your administrator for assistance.

Logo for University of Central Florida Pressbooks

Parts of the Brain Involved with Memory

Learning objectives.

  • Explain the brain functions involved in memory; recognize the roles of the hippocampus, amygdala, and cerebellum in memory

Are memories stored in just one part of the brain, or are they stored in many different parts of the brain? Karl Lashley began exploring this problem, about 100 years ago, by making lesions in the brains of animals such as rats and monkeys. He was searching for evidence of the engram : the group of neurons that serve as the “physical representation of memory” (Josselyn, 2010). First, Lashley (1950) trained rats to find their way through a maze. Then, he used the tools available at the time—in this case a soldering iron—to create lesions in the rats’ brains, specifically in the cerebral cortex. He did this because he was trying to erase the engram, or the original memory trace that the rats had of the maze.

Lashley did not find evidence of the engram, and the rats were still able to find their way through the maze, regardless of the size or location of the lesion. Based on his creation of lesions and the animals’ reaction, he formulated the equipotentiality hypothesis : if part of one area of the brain involved in memory is damaged, another part of the same area can take over that memory function (Lashley, 1950). Although Lashley’s early work did not confirm the existence of the engram, modern psychologists are making progress locating it. Eric Kandel, for example, spent decades working on the synapse, the basic structure of the brain, and its role in controlling the flow of information through neural circuits needed to store memories (Mayford, Siegelbaum, & Kandel, 2012).

Many scientists believe that the entire brain is involved with memory. However, since Lashley’s research, other scientists have been able to look more closely at the brain and memory. They have argued that memory is located in specific parts of the brain, and specific neurons can be recognized for their involvement in forming memories. The main parts of the brain involved with memory are the amygdala, the hippocampus, the cerebellum, and the prefrontal cortex (Figure 1).

An illustration of a brain shows the location of the amygdala, hippocampus, cerebellum, and prefrontal cortex.

First, let’s look at the role of the amygdala in memory formation. The main job of the amygdala is to regulate emotions, such as fear and aggression. The amygdala plays a part in how memories are stored because storage is influenced by stress hormones. For example, one researcher experimented with rats and the fear response (Josselyn, 2010). Using Pavlovian conditioning, a neutral tone was paired with a foot shock to the rats. This produced a fear memory in the rats. After being conditioned, each time they heard the tone, they would freeze (a defense response in rats), indicating a memory for the impending shock. Then the researchers induced cell death in neurons in the lateral amygdala, which is the specific area of the brain responsible for fear memories. They found the fear memory faded (became extinct). Because of its role in processing emotional information, the amygdala is also involved in memory consolidation: the process of transferring new learning into long-term memory. The amygdala seems to facilitate encoding memories at a deeper level when the event is emotionally arousing.

Link to Learning

In this TED Talk called “A Mouse. A Laser Beam. A Manipulated Memory,” Steve Ramirez and Xu Liu from MIT talk about using laser beams to manipulate fear memory in rats. Find out why their work caused a media frenzy once it was published in Science .

Hippocampus

Another group of researchers also experimented with rats to learn how the hippocampus functions in memory processing. They created lesions in the hippocampi of the rats, and found that the rats demonstrated memory impairment on various tasks, such as object recognition and maze running. They concluded that the hippocampus is involved in memory, specifically normal recognition memory as well as spatial memory (when the memory tasks are like recall tests) (Clark, Zola, & Squire, 2000). Another job of the hippocampus is to project information to cortical regions that give memories meaning and connect them with other connected memories. It also plays a part in memory consolidation: the process of transferring new learning into long-term memory.

Injury to this area leaves us unable to process new declarative memories. One famous patient, known for years only as H. M., had both his left and right temporal lobes (hippocampi) removed in an attempt to help control the seizures he had been suffering from for years (Corkin, Amaral, González, Johnson, & Hyman, 1997). As a result, his declarative memory was significantly affected, and he could not form new semantic knowledge. He lost the ability to form new memories, yet he could still remember information and events that had occurred prior to the surgery.

View this Slate video for a closer look at how memory works, as well as how researchers are now studying H. M.’s brain.

Cerebellum and Prefrontal Cortex

Although the hippocampus seems to be more of a processing area for explicit memories, you could still lose it and be able to create implicit memories (procedural memory, motor learning, and classical conditioning), thanks to your cerebellum. For example, one classical conditioning experiment is to accustom subjects to blink when they are given a puff of air. When researchers damaged the cerebellums of rabbits, they discovered that the rabbits were not able to learn the conditioned eye-blink response (Steinmetz, 1999; Green & Woodruff-Pak, 2000).

Other researchers have used brain scans, including positron emission tomography (PET) scans, to learn how people process and retain information. From these studies, it seems the prefrontal cortex is involved. In one study, participants had to complete two different tasks: either looking for the letter a in words (considered a perceptual task) or categorizing a noun as either living or non-living (considered a semantic task) (Kapur et al., 1994). Participants were then asked which words they had previously seen. Recall was much better for the semantic task than for the perceptual task. According to PET scans, there was much more activation in the left inferior prefrontal cortex in the semantic task. In another study, encoding was associated with left frontal activity, while retrieval of information was associated with the right frontal region (Craik et al., 1999).

Neurotransmitters

There also appear to be specific neurotransmitters involved with the process of memory, such as epinephrine, dopamine, serotonin, glutamate, and acetylcholine (Myhrer, 2003). There continues to be discussion and debate among researchers as to which neurotransmitter plays which specific role (Blockland, 1996). Although we don’t yet know which role each neurotransmitter plays in memory, we do know that communication among neurons via neurotransmitters is critical for developing new memories. Repeated activity by neurons leads to increased neurotransmitters in the synapses and more efficient and more synaptic connections. This is how memory consolidation occurs.

It is also believed that strong emotions trigger the formation of strong memories, and weaker emotional experiences form weaker memories; this is called arousal theory (Christianson, 1992). For example, strong emotional experiences can trigger the release of neurotransmitters, as well as hormones, which strengthen memory; therefore, our memory for an emotional event is usually better than our memory for a non-emotional event. When humans and animals are stressed, the brain secretes more of the neurotransmitter glutamate, which helps them remember the stressful event (McGaugh, 2003). This is clearly evidenced by what is known as the flashbulb memory phenomenon.

Learn more about flashbulb memories in this brief video.

You can view the transcript for “Flashbulb Memories” here (opens in new window) .

A flashbulb memory is an exceptionally clear recollection of an important event (Figure 2). Where were you when you first heard about the 9/11 terrorist attacks? Most likely you can remember where you were and what you were doing. In fact, a Pew Research Center (2011) survey found that for those Americans who were age 8 or older at the time of the event, 97% can recall the moment they learned of this event, even a decade after it happened.

A photograph shows the World Trade Center buildings, shortly after two planes were flown into them on the morning of September 11, 2001. Thick, black clouds of smoke stream from both buildings.

Dig Deeper: Inaccurate and False Memories

I was sitting there, and my Chief of Staff—well, first of all, when we walked into the classroom, I had seen this plane fly into the first building. There was a TV set on. And you know, I thought it was pilot error and I was amazed that anybody could make such a terrible mistake. (Greenberg, 2004, p. 2)

Contrary to what President Bush recalled, no one saw the first plane hit, except people on the ground near the twin towers. The plane hitting the first tower was not initially broadcasted on television because it had been a normal Tuesday morning in New York City until the first plane hit.

Some people attributed Bush’s wrong recall of the event to conspiracy theories. However, there is a much more benign explanation: human memory, even flashbulb memories, can be frail. In fact, memory can be so frail that we can convince a person an event happened to them, even when it did not. In studies, research participants will recall hearing a word, even though they never heard the word. For example, participants were given a list of 15 sleep-related words, but the word “sleep” was not on the list. Participants recalled hearing the word “sleep” even though they did not actually hear it (Roediger & McDermott, 2000). The researchers who discovered this named the theory after themselves and a fellow researcher, calling it the Deese-Roediger-McDermott paradigm.

Think It Over

Describe a flashbulb memory of a significant event in your life.

CC licensed content, Original

  • Flashbulb Memory. Authored by : Kara McCord. Located at : https://youtu.be/mPhW9bUI4F0 . License : Other . License Terms : Standard YouTube License
  • Modification, adaptation, and original content. Provided by : Lumen Learning. License : CC BY: Attribution

CC licensed content, Shared previously

  • Parts of the Brain Involved with Memory. Authored by : OpenStax College. Located at : https://openstax.org/books/psychology-2e/pages/8-2-parts-of-the-brain-involved-with-memory . License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction

physical trace of memory

some parts of the brain can take over for damaged parts in forming and storing memories

strong emotions trigger the formation of strong memories and weaker emotional experiences form weaker memories

exceptionally clear recollection of an important event

General Psychology Copyright © by OpenStax and Lumen Learning is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

IMAGES

  1. Get to Know The Parts of Your Brain

    which part of the brain is responsible for problem solving

  2. Exploring the Brain: Uncovering Which Part is Responsible for Problem

    which part of the brain is responsible for problem solving

  3. Understanding the Parts of the Brain

    which part of the brain is responsible for problem solving

  4. Brain Structures and Their Functions

    which part of the brain is responsible for problem solving

  5. problem solving area of brain

    which part of the brain is responsible for problem solving

  6. Parts Of The Brain Lobes And Their Functions

    which part of the brain is responsible for problem solving

VIDEO

  1. SOLVING BIG BRAIN RIDDLES ft. @S8ULSID @SoulAman *Weird*

  2. How does the brain figure out the structures of problems

  3. The Human Brain Explained (Animation)

  4. Lobes of the brain and their functions

  5. The Three Portions of the Brain You Should Know

  6. How the Brain Works: A Visual Guide

COMMENTS

  1. Brain Anatomy and How the Brain Works

    The cerebrum (front of brain) comprises gray matter (the cerebral cortex) and white matter at its center. The largest part of the brain, the cerebrum initiates and coordinates movement and regulates temperature. Other areas of the cerebrum enable speech, judgment, thinking and reasoning, problem-solving, emotions and learning.

  2. How the brain solves problems

    Holistic problem solving. Depending on the problem in front of you, the entire brain could be involved in trying to find a solution, says Professor Kate Cockcroft, Division Leader of cognitive ...

  3. Parts of the Brain and Their Functions

    The four lobes of the brain are regions of the cerebrum: Frontal Lobe. Location: This is the anterior or front part of the brain. Functions: Decision making, problem solving, control of purposeful behaviors, consciousness, and emotions. Parietal Lobe. Location: Sits behind the frontal lobe.

  4. The Brain: Anatomy, Function, and Treatment

    The brain controls your thoughts, feelings, and physical movements. The brain is a unique organ that is responsible for many functions such as problem-solving, thinking, emotions, controlling physical movements, and mediating the perception and responses related to the five senses. The many nerve cells of the brain communicate with each other ...

  5. Frontal Lobe

    The frontal lobe is the brain's largest region, located behind the forehead, at the front of the brain. These lobes are part of the cerebral cortex and are the largest brain structure. The frontal lobe's main functions are typically associated with 'higher' cognitive functions, including decision-making, problem-solving, thought, and ...

  6. Cerebral Cortex: What It Is, Function & Location

    Cerebral Cortex. Your cerebral cortex, also called gray matter, is your brain's outermost layer of nerve cell tissue. It has a wrinkled appearance from its many folds and grooves. Your cerebral cortex plays a key role in memory, thinking, learning, reasoning, problem-solving, emotions, consciousness and functions related to your senses.

  7. The human brain: Parts, function, diagram, and more

    This part of the brain is responsible for many processes, including: initiating and controlling movement ; thinking ; emotion ; problem-solving ; learning ; The cerebrum is responsible for ...

  8. Cerebrum: What It Is, Function & Anatomy

    Your cerebrum is the part of your brain that starts and manages conscious thoughts; meaning, things that you actively think about or do. Your cerebellum is a small part of your brain located at the bottom of this organ near the back of your head. It processes and regulates signals between other parts of your brain and body, and is involved in ...

  9. Cerebral cortex: Structure and functions

    The cerebral cortex is the part of the brain responsible for higher cognitive abilities. ... (right and left), the largest part of the brain. The cerebrum consists of the outer grey matter (cerebral cortex), an inner mass ... attention, learning, memory, problem-solving, and conceptual thinking. This article will discuss the anatomy and ...

  10. Mapping the Brain

    The frontal lobe is responsible for initiating and coordinating motor movements; higher cognitive skills, such as problem solving, thinking, planning, and organizing; and for many aspects of personality and emotional makeup. The parietal lobe is involved with sensory processes, attention, and language.

  11. Brain Regions and Functions

    Brain Work. The brain is a very busy organ. It is the control center for the body. It runs your organs such as your heart and lungs. It is also busy working with other parts of your body. All of your senses - sight, smell, hearing, touch, and taste - depend on your brain. Tasting food with the sensors on your tongue is only possible if the ...

  12. Learning, Recalling, and Thinking

    The brain regulates an array of functions necessary to survival: the action of our five senses, the continuous monitoring of the spatial surround, contraction and relaxation of the digestive muscles, the rhythms of breathing and a regular heartbeat. As the vital functions maintain their steady course without our conscious exertion, we are accustomed to consider the brain as preeminently the ...

  13. Anatomy of the Brain

    This is the middle of the brain. It includes the midbrain, the pons, and the medulla. The brainstem controls movement of the eyes, face, and mouth. It also relays sensory messages (such as hot, pain, and loud) and controls respirations, consciousness, cardiac function, involuntary muscle movements, sneezing, coughing, vomiting, and swallowing ...

  14. Anatomy, Central Nervous System

    The nervous system subdivides into the central nervous system and the peripheral nervous system. The central nervous system is the brain and spinal cord, while the peripheral nervous system consists of everything else. The central nervous system's responsibilities include receiving, processing, and responding to sensory information. See Image. Peripheral and Central Nervous Systems.

  15. Prefrontal Cortex: Anatomy, Function, and Conditions

    Anatomy. The prefrontal cortex (PFC) is connected to many other parts of the brain and is able to send and receive information. The prefrontal cortex is divided into these two parts: Medial PFC (mPFC): It is involved in self-reflection, memory, and emotional processing. Lateral PFC (lPFC): It is involved in sensory processing, motor control ...

  16. Teen Brain: Behavior, Problem Solving, and Decision Making

    Scientists have identified a specific region of the brain called the amygdala that is responsible for immediate reactions including fear and aggressive behavior. This region develops early. However, the frontal cortex, the area of the brain that controls reasoning and helps us think before we act, develops later. This part of the brain is still ...

  17. The Brain & Problem Solving: Areas & Process

    Another area of the brain vital to problem solving is the prefrontal cortex, located toward the front of the brain. For a long time, it was thought that some parts of the prefrontal cortex were ...

  18. Parts of the Brain Involved with Memory

    The main parts of the brain involved with memory are the amygdala, the hippocampus, the cerebellum, and the prefrontal cortex (Figure 1). Figure 1. The amygdala is involved in fear and fear memories. The hippocampus is associated with declarative and episodic memory as well as recognition memory. The cerebellum plays a role in processing ...

  19. Brain areas associated with numbers and calculations in children: Meta

    Much progress has been made in understanding brain correlates of mathematical cognition; however, despite the increase in the studies examining children's mathematical problem solving (i.e., quantity discrimination and mathematical operations), a neuropsychological model for children is still not available.

  20. med term ch 12 Flashcards

    Study with Quizlet and memorize flashcards containing terms like Which part of the brain is responsible for thoughts, judgment, memory, problem solving, and language?, Which of the following statements regarding the nervous system is not true? -All portions of the nervous system are composed of nervous tissue. -Cranial and spinal nerves are part of the central nervous system. -Sensory nerves ...