Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 02 August 2023

Scientific discovery in the age of artificial intelligence

  • Hanchen Wang   ORCID: orcid.org/0000-0002-1691-024X 1 , 2   na1   nAff37   nAff38 ,
  • Tianfan Fu 3   na1 ,
  • Yuanqi Du 4   na1 ,
  • Wenhao Gao 5 ,
  • Kexin Huang 6 ,
  • Ziming Liu 7 ,
  • Payal Chandak   ORCID: orcid.org/0000-0003-1097-803X 8 ,
  • Shengchao Liu   ORCID: orcid.org/0000-0003-2030-2367 9 , 10 ,
  • Peter Van Katwyk   ORCID: orcid.org/0000-0002-3512-0665 11 , 12 ,
  • Andreea Deac 9 , 10 ,
  • Anima Anandkumar 2 , 13 ,
  • Karianne Bergen 11 , 12 ,
  • Carla P. Gomes   ORCID: orcid.org/0000-0002-4441-7225 4 ,
  • Shirley Ho 14 , 15 , 16 , 17 ,
  • Pushmeet Kohli   ORCID: orcid.org/0000-0002-7466-7997 18 ,
  • Joan Lasenby 1 ,
  • Jure Leskovec   ORCID: orcid.org/0000-0002-5411-923X 6 ,
  • Tie-Yan Liu 19 ,
  • Arjun Manrai 20 ,
  • Debora Marks   ORCID: orcid.org/0000-0001-9388-2281 21 , 22 ,
  • Bharath Ramsundar 23 ,
  • Le Song 24 , 25 ,
  • Jimeng Sun 26 ,
  • Jian Tang 9 , 27 , 28 ,
  • Petar Veličković 18 , 29 ,
  • Max Welling 30 , 31 ,
  • Linfeng Zhang 32 , 33 ,
  • Connor W. Coley   ORCID: orcid.org/0000-0002-8271-8723 5 , 34 ,
  • Yoshua Bengio   ORCID: orcid.org/0000-0002-9322-3515 9 , 10 &
  • Marinka Zitnik   ORCID: orcid.org/0000-0001-8530-7228 20 , 22 , 35 , 36  

Nature volume  620 ,  pages 47–60 ( 2023 ) Cite this article

95k Accesses

136 Citations

598 Altmetric

Metrics details

  • Computer science
  • Machine learning
  • Scientific community

A Publisher Correction to this article was published on 30 August 2023

This article has been updated

Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect and interpret large datasets, and gain insights that might not have been possible using traditional scientific methods alone. Here we examine breakthroughs over the past decade that include self-supervised learning, which allows models to be trained on vast amounts of unlabelled data, and geometric deep learning, which leverages knowledge about the structure of scientific data to enhance model accuracy and efficiency. Generative AI methods can create designs, such as small-molecule drugs and proteins, by analysing diverse data modalities, including images and sequences. We discuss how these methods can help scientists throughout the scientific process and the central issues that remain despite such advances. Both developers and users of AI tools need a better understanding of when such approaches need improvement, and challenges posed by poor data quality and stewardship remain. These issues cut across scientific disciplines and require developing foundational algorithmic approaches that can contribute to scientific understanding or acquire it autonomously, making them critical areas of focus for AI innovation.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

artificial intelligence for research papers

Similar content being viewed by others

artificial intelligence for research papers

Accelerating science with human-aware artificial intelligence

artificial intelligence for research papers

Accelerating material design with the generative toolkit for scientific discovery

artificial intelligence for research papers

Why big data and compute are not necessarily the path to big materials science

Change history, 30 august 2023.

A Correction to this paper has been published: https://doi.org/10.1038/s41586-023-06559-7

LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521 , 436–444 (2015). This survey summarizes key elements of deep learning and its development in speech recognition, computer vision and and natural language processing .

Article   ADS   CAS   PubMed   Google Scholar  

de Regt, H. W. Understanding, values, and the aims of science. Phil. Sci. 87 , 921–932 (2020).

Article   MathSciNet   Google Scholar  

Pickstone, J. V. Ways of Knowing: A New History of Science, Technology, and Medicine (Univ. Chicago Press, 2001).

Han, J. et al. Deep potential: a general representation of a many-body potential energy surface. Commun. Comput. Phys. 23 , 629–639 (2018). This paper introduced a deep neural network architecture that learns the potential energy surface of many-body systems while respecting the underlying symmetries of the system by incorporating group theory.

Akiyama, K. et al. First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875 , L4 (2019).

Article   ADS   CAS   Google Scholar  

Wagner, A. Z. Constructions in combinatorics via neural networks. Preprint at https://arxiv.org/abs/2104.14516 (2021).

Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365 , eaax1566 (2019).

Article   CAS   PubMed   Google Scholar  

Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at https://arxiv.org/abs/2108.07258 (2021).

Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600 , 70–74 (2021). This paper explores how AI can aid the development of pure mathematics by guiding mathematical intuition.

Article   ADS   CAS   PubMed   PubMed Central   MATH   Google Scholar  

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596 , 583–589 (2021). This study was the first to demonstrate the ability to predict protein folding structures using AI methods with a high degree of accuracy, achieving results that are at or near the experimental resolution. This accomplishment is particularly noteworthy, as predicting protein folding has been a grand challenge in the field of molecular biology for over 50 years.

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180 , 688–702 (2020).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Bohacek, R. S., McMartin, C. & Guida, W. C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16 , 3–50 (1996).

Bileschi, M. L. et al. Using deep learning to annotate the protein universe. Nat. Biotechnol. 40 , 932–937 (2022).

Bellemare, M. G. et al. Autonomous navigation of stratospheric balloons using reinforcement learning. Nature 588 , 77–82 (2020). This paper describes a reinforcement-learning algorithm for navigating a super-pressure balloon in the stratosphere, making real-time decisions in the changing environment.

Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571 , 95–98 (2019).

Zhang, L. et al. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120 , 143001 (2018).

Deiana, A. M. et al. Applications and techniques for fast machine learning in science. Front. Big Data 5 , 787421 (2022).

Karagiorgi, G. et al. Machine learning in the search for new fundamental physics. Nat. Rev. Phys. 4 , 399–412 (2022).

Zhou, C. & Paffenroth, R. C. Anomaly detection with robust deep autoencoders. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 665–674 (2017).

Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313 , 504–507 (2006).

Article   ADS   MathSciNet   CAS   PubMed   MATH   Google Scholar  

Kasieczka, G. et al. The LHC Olympics 2020 a community challenge for anomaly detection in high energy physics. Rep. Prog. Phys. 84 , 124201 (2021).

Govorkova, E. et al. Autoencoders on field-programmable gate arrays for real-time, unsupervised new physics detection at 40 MHz at the Large Hadron Collider. Nat. Mach. Intell. 4 , 154–161 (2022).

Article   Google Scholar  

Chamberland, M. et al. Detecting microstructural deviations in individuals with deep diffusion MRI tractometry. Nat. Comput. Sci. 1 , 598–606 (2021).

Article   PubMed   PubMed Central   Google Scholar  

Rafique, M. et al. Delegated regressor, a robust approach for automated anomaly detection in the soil radon time series data. Sci. Rep. 10 , 3004 (2020).

Pastore, V. P. et al. Annotation-free learning of plankton for classification and anomaly detection. Sci. Rep. 10 , 12142 (2020).

Naul, B. et al. A recurrent neural network for classification of unevenly sampled variable stars. Nat. Astron. 2 , 151–155 (2018).

Article   ADS   Google Scholar  

Lee, D.-H. et al. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In ICML Workshop on Challenges in Representation Learning (2013).

Zhou, D. et al. Learning with local and global consistency. In Advances in Neural Information Processing Systems 16 , 321–328 (2003).

Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10 , 221–227 (2013).

Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 16 , 695–698 (2019).

Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO 2 reduction and H 2 evolution. Nat. Catal. 1 , 696–703 (2018).

Article   CAS   Google Scholar  

Jablonka, K. M. et al. Bias free multiobjective active learning for materials design and discovery. Nat. Commun. 12 , 2312 (2021).

Roussel, R. et al. Turn-key constrained parameter space exploration for particle accelerators using Bayesian active learning. Nat. Commun. 12 , 5612 (2021).

Ratner, A. J. et al. Data programming: creating large training sets, quickly. In Advances in Neural Information Processing Systems 29 , 3567–3575 (2016).

Ratner, A. et al. Snorkel: rapid training data creation with weak supervision. In International Conference on Very Large Data Bases 11 , 269–282 (2017). This paper presents a weakly-supervised AI system designed to annotate massive amounts of data using labeling functions.

Butter, A. et al. GANplifying event samples. SciPost Phys. 10 , 139 (2021).

Brown, T. et al. Language models are few-shot learners. In Advances in Neural Information Processing Systems 33 , 1877–1901 (2020).

Ramesh, A. et al. Zero-shot text-to-image generation. In International Conference on Machine Learning 139 , 8821–8831 (2021).

Littman, M. L. Reinforcement learning improves behaviour from evaluative feedback. Nature 521 , 445–451 (2015).

Cubuk, E. D. et al. Autoaugment: learning augmentation strategies from data. In IEEE Conference on Computer Vision and Pattern Recognition 113–123 (2019).

Reed, C. J. et al. Selfaugment: automatic augmentation policies for self-supervised learning. In IEEE Conference on Computer Vision and Pattern Recognition 2674–2683 (2021).

ATLAS Collaboration et al. Deep generative models for fast photon shower simulation in ATLAS. Preprint at https://arxiv.org/abs/2210.06204 (2022).

Mahmood, F. et al. Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans. Med. Imaging 39 , 3257–3267 (2019).

Teixeira, B. et al. Generating synthetic X-ray images of a person from the surface geometry. In IEEE Conference on Computer Vision and Pattern Recognition 9059–9067 (2018).

Lee, D., Moon, W.-J. & Ye, J. C. Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks. Nat. Mach. Intell. 2 , 34–42 (2020).

Kench, S. & Cooper, S. J. Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion. Nat. Mach. Intell. 3 , 299–305 (2021).

Wan, C. & Jones, D. T. Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nat. Mach. Intell. 2 , 540–550 (2020).

Repecka, D. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat. Mach. Intell. 3 , 324–333 (2021).

Marouf, M. et al. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat. Commun. 11 , 166 (2020).

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521 , 452–459 (2015). This survey provides an introduction to probabilistic machine learning, which involves the representation and manipulation of uncertainty in models and predictions, playing a central role in scientific data analysis.

Cogan, J. et al. Jet-images: computer vision inspired techniques for jet tagging. J. High Energy Phys. 2015 , 118 (2015).

Zhao, W. et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat. Biotechnol. 40 , 606–617 (2022).

Brbić, M. et al. MARS: discovering novel cell types across heterogeneous single-cell experiments. Nat. Methods 17 , 1200–1206 (2020).

Article   PubMed   Google Scholar  

Qiao, C. et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods 18 , 194–202 (2021).

Andreassen, A. et al. OmniFold: a method to simultaneously unfold all observables. Phys. Rev. Lett. 124 , 182001 (2020).

Bergenstråhle, L. et al. Super-resolved spatial transcriptomics by deep data fusion. Nat. Biotechnol. 40 , 476–479 (2021).

Vincent, P. et al. Extracting and composing robust features with denoising autoencoders. In International Conference on Machine Learning 1096–1103 (2008).

Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In International Conference on Learning Representations (2014).

Eraslan, G. et al. Single-cell RNA-seq denoising using a deep count autoencoder. Nat. Commun. 10 , 390 (2019).

Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 , 607–609 (1996).

Bengio, Y. Deep learning of representations for unsupervised and transfer learning. In ICML Workshop on Unsupervised and Transfer Learning (2012).

Detlefsen, N. S., Hauberg, S. & Boomsma, W. Learning meaningful representations of protein sequences. Nat. Commun. 13 , 1914 (2022).

Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37 , 38–44 (2019).

Bronstein, M. M. et al. Geometric deep learning: going beyond euclidean data. IEEE Signal Process Mag. 34 , 18–42 (2017).

Anderson, P. W. More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177 , 393–396 (1972).

Qiao, Z. et al. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry. Proc. Natl Acad. Sci. USA 119 , e2205221119 (2022).

Bogatskiy, A. et al. Symmetry group equivariant architectures for physics. Preprint at https://arxiv.org/abs/2203.06153 (2022).

Bronstein, M. M. et al. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. Preprint at https://arxiv.org/abs/2104.13478 (2021).

Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373 , 1047–1051 (2021).

Wicky, B. I. M. et al. Hallucinating symmetric protein assemblies. Science 378 , 56–61 (2022).

Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In International Conference on Learning Representations (2017).

Veličković, P. et al. Graph attention networks. In International Conference on Learning Representations (2018).

Hamilton, W. L., Ying, Z. & Leskovec, J. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems 30 , 1024–1034 (2017).

Gilmer, J. et al. Neural message passing for quantum chemistry. In International Conference on Machine Learning 1263–1272 (2017).

Li, M. M., Huang, K. & Zitnik, M. Graph representation learning in biomedicine and healthcare. Nat. Biomed. Eng. 6 , 1353–1369 (2022).

Satorras, V. G., Hoogeboom, E. & Welling, M. E( n ) equivariant graph neural networks. In International Conference on Machine Learning 9323–9332 (2021). This study incorporates principles of physics into the design of neural models, advancing the field of equivariant machine learning .

Thomas, N. et al. Tensor field networks: rotation-and translation-equivariant neural networks for 3D point clouds. Preprint at https://arxiv.org/abs/1802.08219 (2018).

Finzi, M. et al. Generalizing convolutional neural networks for equivariance to lie groups on arbitrary continuous data. In International Conference on Machine Learning 3165–3176 (2020).

Fuchs, F. et al. SE(3)-transformers: 3D roto-translation equivariant attention networks. In Advances in Neural Information Processing Systems 33 , 1970-1981 (2020).

Zaheer, M. et al. Deep sets. In Advances in Neural Information Processing Systems 30 , 3391–3401 (2017). This paper is an early study that explores the use of deep neural architectures on set data, which consists of an unordered list of elements.

Cohen, T. S. et al. Spherical CNNs. In International Conference on Learning Representations (2018).

Gordon, J. et al. Permutation equivariant models for compositional generalization in language. In International Conference on Learning Representations (2019).

Finzi, M., Welling, M. & Wilson, A. G. A practical method for constructing equivariant multilayer perceptrons for arbitrary matrix groups. In International Conference on Machine Learning 3318–3328 (2021).

Dijk, D. V. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174 , 716–729 (2018).

Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17 , 184–192 (2020).

Hatfield, P. W. et al. The data-driven future of high-energy-density physics. Nature 593 , 351–361 (2021).

Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16 , 448–454 (2020).

Zhang, R., Zhou, T. & Ma, J. Multiscale and integrative single-cell Hi-C analysis with Higashi. Nat. Biotechnol. 40 , 254–261 (2022).

Sammut, S.-J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601 , 623–629 (2022).

DeZoort, G. et al. Graph neural networks at the Large Hadron Collider. Nat. Rev. Phys . 5 , 281–303 (2023).

Liu, S. et al. Pre-training molecular graph representation with 3D geometry. In International Conference on Learning Representations (2022).

The LIGO Scientific Collaboration. et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 551 , 85–88 (2017).

Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566 , 195–204 (2019).

Goenka, S. D. et al. Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing. Nat. Biotechnol. 40 , 1035–1041 (2022).

Bengio, Y. et al. Greedy layer-wise training of deep networks. In Advances in Neural Information Processing Systems 19 , 153–160 (2006).

Hinton, G. E., Osindero, S. & Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 18 , 1527–1554 (2006).

Article   MathSciNet   PubMed   MATH   Google Scholar  

Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349 , 255–260 (2015).

Devlin, J. et al. BERT: pre-training of deep bidirectional transformers for language understanding. In North American Chapter of the Association for Computational Linguistics 4171–4186 (2019).

Rives, A. et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc. Natl Acad. Sci. USA 118 , e2016239118 (2021).

Elnaggar, A. et al. ProtTrans: rowards cracking the language of lifes code through self-supervised deep learning and high performance computing. In IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

Hie, B. et al. Learning the language of viral evolution and escape. Science 371 , 284–288 (2021). This paper modeled viral escape with machine learning algorithms originally developed for human natural language.

Biswas, S. et al. Low- N protein engineering with data-efficient deep learning. Nat. Methods 18 , 389–396 (2021).

Ferruz, N. & Höcker, B. Controllable protein design with language models. Nat. Mach. Intell. 4 , 521–532 (2022).

Hsu, C. et al. Learning inverse folding from millions of predicted structures. In International Conference on Machine Learning 8946–8970 (2022).

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373 , 871–876 (2021). Inspired by AlphaFold2, this study reported RoseTTAFold, a novel three-track neural module capable of simultaneously processing protein’s sequence, distance and coordinates.

Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28 , 31–36 (1988).

Lin, T.-S. et al. BigSMILES: a structurally-based line notation for describing macromolecules. ACS Cent. Sci. 5 , 1523–1531 (2019).

Krenn, M. et al. SELFIES and the future of molecular string representations. Patterns 3 , 100588 (2022).

Flam-Shepherd, D., Zhu, K. & Aspuru-Guzik, A. Language models can learn complex molecular distributions. Nat. Commun. 13 , 3293 (2022).

Skinnider, M. A. et al. Chemical language models enable navigation in sparsely populated chemical space. Nat. Mach. Intell. 3 , 759–770 (2021).

Chithrananda, S., Grand, G. & Ramsundar, B. ChemBERTa: large-scale self-supervised pretraining for molecular property prediction. In Machine Learning for Molecules Workshop at NeurIPS (2020).

Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11 , 3316–3325 (2020).

Tetko, I. V. et al. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis. Nat. Commun. 11 , 5575 (2020).

Schwaller, P. et al. Mapping the space of chemical reactions using attention-based neural networks. Nat. Mach. Intell. 3 , 144–152 (2021).

Kovács, D. P., McCorkindale, W. & Lee, A. A. Quantitative interpretation explains machine learning models for chemical reaction prediction and uncovers bias. Nat. Commun. 12 , 1695 (2021).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Pesciullesi, G. et al. Transfer learning enables the molecular transformer to predict regio-and stereoselective reactions on carbohydrates. Nat. Commun. 11 , 4874 (2020).

Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems 30 , 5998–6008 (2017). This paper introduced the transformer, a modern neural network architecture that can process sequential data in parallel, revolutionizing natural language processing and sequence modeling.

Mousavi, S. M. et al. Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nat. Commun. 11 , 3952 (2020).

Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18 , 1196–1203 (2021).

Meier, J. et al. Language models enable zero-shot prediction of the effects of mutations on protein function. In Advances in Neural Information Processing Systems 34 , 29287–29303 (2021).

Kamienny, P.-A. et al. End-to-end symbolic regression with transformers. In Advances in Neural Information Processing Systems 35 , 10269–10281 (2022).

Jaegle, A. et al. Perceiver: general perception with iterative attention. In International Conference on Machine Learning 4651–4664 (2021).

Chen, L. et al. Decision transformer: reinforcement learning via sequence modeling. In Advances in Neural Information Processing Systems 34 , 15084–15097 (2021).

Dosovitskiy, A. et al. An image is worth 16x16 words: transformers for image recognition at scale. In International Conference on Learning Representations (2020).

Choromanski, K. et al. Rethinking attention with performers. In International Conference on Learning Representations (2021).

Li, Z. et al. Fourier neural operator for parametric partial differential equations. In International Conference on Learning Representations (2021).

Kovachki, N. et al. Neural operator: learning maps between function spaces. J. Mach. Learn. Res. 24 , 1–97 (2023).

Russell, J. L. Kepler’s laws of planetary motion: 1609–1666. Br. J. Hist. Sci. 2 , 1–24 (1964).

Huang, K. et al. Artificial intelligence foundation for therapeutic science. Nat. Chem. Biol. 18 , 1033–1036 (2022).

Guimerà, R. et al. A Bayesian machine scientist to aid in the solution of challenging scientific problems. Sci. Adv. 6 , eaav6971 (2020).

Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01349-8 (2023).

Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15 , 1120–1127 (2016). This paper proposes using a black-box AI predictor to accelerate high-throughput screening of molecules in materials science.

Article   ADS   PubMed   Google Scholar  

Sadybekov, A. A. et al. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 601 , 452–459 (2022).

The NNPDF Collaboration Evidence for intrinsic charm quarks in the proton. Nature 606 , 483–487 (2022).

Graff, D. E., Shakhnovich, E. I. & Coley, C. W. Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem. Sci. 12 , 7866–7881 (2021).

Janet, J. P. et al. Accurate multiobjective design in a space of millions of transition metal complexes with neural-network-driven efficient global optimization. ACS Cent. Sci. 6 , 513–524 (2020).

Bacon, F. Novum Organon Vol. 1620 (2000).

Schmidt, M. & Lipson, H. Distilling free-form natural laws from experimental data. Science 324 , 81–85 (2009).

Petersen, B. K. et al. Deep symbolic regression: recovering mathematical expressions from data via risk-seeking policy gradients. In International Conference on Learning Representations (2020).

Zhavoronkov, A. et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 37 , 1038–1040 (2019). This paper describes a reinforcement-learning algorithm for navigating molecular combinatorial spaces, and it validates generated molecules using wet-lab experiments.

Zhou, Z. et al. Optimization of molecules via deep reinforcement learning. Sci. Rep. 9 , 10752 (2019).

You, J. et al. Graph convolutional policy network for goal-directed molecular graph generation. In Advances in Neural Information Processing Systems 31 , 6412–6422 (2018).

Bengio, Y. et al. GFlowNet foundations. Preprint at https://arxiv.org/abs/2111.09266 (2021). This paper describes a generative flow network that generates objects by sampling them from a distribution optimized for drug design.

Jain, M. et al. Biological sequence design with GFlowNets. In International Conference on Machine Learning 9786–9801 (2022).

Malkin, N. et al. Trajectory balance: improved credit assignment in GFlowNets. In Advances in Neural Information Processing Systems 35 , 5955–5967 (2022).

Borkowski, O. et al. Large scale active-learning-guided exploration for in vitro protein production optimization. Nat. Commun. 11 , 1872 (2020). This study introduced a dynamic programming approach to determine the optimal locations and capacities of hydropower dams in the Amazon Basin, balancing between energy production and environmental impact .

Flecker, A. S. et al. Reducing adverse impacts of Amazon hydropower expansion. Science 375 , 753–760 (2022). This study introduced a dynamic programming approach to determine the optimal locations and capacities of hydropower dams in the Amazon basin, achieving a balance between the benefits of energy production and the potential environmental impacts.

Pion-Tonachini, L. et al. Learning from learning machines: a new generation of AI technology to meet the needs of science. Preprint at https://arxiv.org/abs/2111.13786 (2021).

Kusner, M. J., Paige, B. & Hernández-Lobato, J. M. Grammar variational autoencoder. In International Conference on Machine Learning 1945–1954 (2017). This paper describes a grammar variational autoencoder that generates novel symbolic laws and drug molecules.

Brunton, S. L., Proctor, J. L. & Kutz, J. N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113 , 3932–3937 (2016).

Article   ADS   MathSciNet   CAS   PubMed   PubMed Central   MATH   Google Scholar  

Liu, Z. & Tegmark, M. Machine learning hidden symmetries. Phys. Rev. Lett. 128 , 180201 (2022).

Article   ADS   MathSciNet   CAS   PubMed   Google Scholar  

Gabbard, H. et al. Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy. Nat. Phys. 18 , 112–117 (2022).

Chen, D. et al. Automating crystal-structure phase mapping by combining deep learning with constraint reasoning. Nat. Mach. Intell. 3 , 812–822 (2021).

Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4 , 268–276 (2018).

Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600 , 547–552 (2021).

Fu, T. et al. Differentiable scaffolding tree for molecular optimization. In International Conference on Learning Representations (2021).

Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361 , 360–365 (2018).

Huang, K. et al. Therapeutics Data Commons: machine learning datasets and tasks for drug discovery and development. In NeurIPS Datasets and Benchmarks (2021). This study describes an initiative with open AI models, datasets and education programmes to facilitate advances in therapeutic science across all stages of drug discovery and development.

Dance, A. Lab hazard. Nature 458 , 664–665 (2009).

Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555 , 604–610 (2018). This paper describes an approach that combines deep neural networks with Monte Carlo tree search to plan chemical synthesis.

Gao, W., Raghavan, P. & Coley, C. W. Autonomous platforms for data-driven organic synthesis. Nat. Commun. 13 , 1075 (2022).

Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11 , 5966 (2020).

Gormley,A. J. & Webb, M. A. Machine learning in combinatorial polymer chemistry. Nat. Rev. Mater. 6 , 642–644 (2021).

Ament, S. et al. Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams. Sci. Adv. 7 , eabg4930 (2021).

Degrave, J. et al. Magnetic control of tokamak plasmas through deep reinforcement learning. Nature 602 , 414–419 (2022). This paper describes an approach for controlling tokamak plasmas, using a reinforcement-learning agent to command-control coils and satisfy physical and operational constraints.

Melnikov, A. A. et al. Active learning machine learns to create new quantum experiments. Proc. Natl Acad. Sci. USA 115 , 1221–1226 (2018).

Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8 , 3192–3203 (2017).

Wang, D. et al. Efficient sampling of high-dimensional free energy landscapes using adaptive reinforced dynamics. Nat. Comput. Sci. 2 , 20–29 (2022). This paper describes a neural network for reliable uncertainty estimations in molecular dynamics, enabling efficient sampling of high-dimensional free energy landscapes.

Wang, W. & Gómez-Bombarelli, R. Coarse-graining auto-encoders for molecular dynamics. npj Comput. Mater. 5 , 125 (2019).

Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12 , 891–897 (2020). This paper describes a method to learn the wavefunction of quantum systems using deep neural networks in conjunction with variational quantum Monte Carlo.

Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355 , 602–606 (2017).

Em Karniadakis, G. et al. Physics-informed machine learning. Nat. Rev. Phys. 3 , 422–440 (2021).

Li, Z. et al. Physics-informed neural operator for learning partial differential equations. Preprint at https://arxiv.org/abs/2111.03794 (2021).

Kochkov, D. et al. Machine learning–accelerated computational fluid dynamics. Proc. Natl Acad. Sci. USA 118 , e2101784118 (2021). This paper describes an approach to accelerating computational fluid dynamics by training a neural network to interpolate from coarse to fine grids and generalize to varying forcing functions and Reynolds numbers.

Ji, W. et al. Stiff-PINN: physics-informed neural network for stiff chemical kinetics. J. Phys. Chem. A 125 , 8098–8106 (2021).

Smith, J. D., Azizzadenesheli, K. & Ross, Z. E. EikoNet: solving the Eikonal equation with deep neural networks. IEEE Trans. Geosci. Remote Sens. 59 , 10685–10696 (2020).

Waheed, U. B. et al. PINNeik: Eikonal solution using physics-informed neural networks. Comput. Geosci. 155 , 104833 (2021).

Chen, R. T. Q. et al. Neural ordinary differential equations. In Advances in Neural Information Processing Systems 31 , 6572–6583 (2018). This paper established a connection between neural networks and differential equations by introducing the adjoint method to learn continuous-time dynamical systems from data, replacing backpropagation.

Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378 , 686–707 (2019). This paper describes a deep-learning approach for solving forwards and inverse problems in nonlinear partial differential equations and can find solutions to differential equations from data.

Article   ADS   MathSciNet   MATH   Google Scholar  

Lu, L. et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3 , 218–229 (2021).

Brandstetter, J., Worrall, D. & Welling, M. Message passing neural PDE solvers. In International Conference on Learning Representations (2022).

Noé, F. et al. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365 , eaaw1147 (2019). This paper presents an efficient sampling algorithm using normalizing flows to simulate equilibrium states in many-body systems.

Rezende, D. & Mohamed, S. Variational inference with normalizing flows. In International Conference on Machine Learning 37 , 1530–1538, (2015).

Dinh, L., Sohl-Dickstein, J. & Bengio, S. Density estimation using real NVP. In International Conference on Learning Representations (2017).

Nicoli, K. A. et al. Estimation of thermodynamic observables in lattice field theories with deep generative models. Phys. Rev. Lett. 126 , 032001 (2021).

Kanwar, G. et al. Equivariant flow-based sampling for lattice gauge theory. Phys. Rev. Lett. 125 , 121601 (2020).

Gabrié, M., Rotskoff, G. M. & Vanden-Eijnden, E. Adaptive Monte Carlo augmented with normalizing flows. Proc. Natl Acad. Sci. USA 119 , e2109420119 (2022).

Article   MathSciNet   PubMed   PubMed Central   Google Scholar  

Jasra, A., Holmes, C. C. & Stephens, D. A. Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Stat. Sci. 20 , 50–67 (2005).

Bengio, Y. et al. Better mixing via deep representations. In International Conference on Machine Learning 552–560 (2013).

Pompe, E., Holmes, C. & Łatuszyński, K. A framework for adaptive MCMC targeting multimodal distributions. Ann. Stat. 48 , 2930–2952 (2020).

Article   MathSciNet   MATH   Google Scholar  

Townshend, R. J. L. et al. ATOM3D: tasks on molecules in three dimensions. In NeurIPS Datasets and Benchmarks (2021).

Kearnes, S. M. et al. The open reaction database. J. Am. Chem. Soc. 143 , 18820–18826 (2021).

Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11 , 6059–6072 (2021).

Brown, N. et al. GuacaMol: benchmarking models for de novo molecular design. J. Chem. Inf. Model. 59 , 1096–1108 (2019).

Notin, P. et al. Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval. In International Conference on Machine Learning 16990–17017 (2022).

Mitchell, M. et al. Model cards for model reporting. In Conference on Fairness, Accountability, and Transparency 220–229 (2019).

Gebru, T. et al. Datasheets for datasets. Commun. ACM 64 , 86–92 (2021).

Bai, X. et al. Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence. Nat. Mach. Intell. 3 , 1081–1089 (2021).

Warnat-Herresthal, S. et al. Swarm learning for decentralized and confidential clinical machine learning. Nature 594 , 265–270 (2021).

Hie, B., Cho, H. & Berger, B. Realizing private and practical pharmacological collaboration. Science 362 , 347–350 (2018).

Rohrbach, S. et al. Digitization and validation of a chemical synthesis literature database in the ChemPU. Science 377 , 172–180 (2022).

Gysi, D. M. et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl Acad. Sci. USA 118 , e2025581118 (2021).

King, R. D. et al. The automation of science. Science 324 , 85–89 (2009).

Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19 , 679–682 (2022).

Doerr, S. et al. TorchMD: a deep learning framework for molecular simulations. J. Chem. Theory Comput. 17 , 2355–2363 (2021).

Schoenholz, S. S. & Cubuk, E. D. JAX MD: a framework for differentiable physics. In Advances in Neural Information Processing Systems 33 , 11428–11441 (2020).

Peters, J., Janzing, D. & Schölkopf, B. Elements of Causal Inference: Foundations and Learning Algorithms (MIT Press, 2017).

Bengio, Y. et al. A meta-transfer objective for learning to disentangle causal mechanisms. In International Conference on Learning Representations (2020).

Schölkopf, B. et al. Toward causal representation learning. Proc. IEEE 109 , 612–634 (2021).

Goyal, A. & Bengio, Y. Inductive biases for deep learning of higher-level cognition. Proc. R. Soc. A 478 , 20210068 (2022).

Deleu, T. et al. Bayesian structure learning with generative flow networks. In Conference on Uncertainty in Artificial Intelligence 518–528 (2022).

Geirhos, R. et al. Shortcut learning in deep neural networks. Nat. Mach. Intell. 2 , 665–673 (2020).

Koh, P. W. et al. WILDS: a benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning 5637–5664 (2021).

Luo, Z. et al. Label efficient learning of transferable representations across domains and tasks. In Advances in Neural Information Processing Systems 30 , 165–177 (2017).

Mahmood, R. et al. How much more data do I need? estimating requirements for downstream tasks. In IEEE Conference on Computer Vision and Pattern Recognition 275–284 (2022).

Coley, C. W., Eyke, N. S. & Jensen, K. F. Autonomous discovery in the chemical sciences part II: outlook. Angew. Chem. Int. Ed. 59 , 23414–23436 (2020).

Gao, W. & Coley, C. W. The synthesizability of molecules proposed by generative models. J. Chem. Inf. Model. 60 , 5714–5723 (2020).

Kogler, R. et al. Jet substructure at the Large Hadron Collider. Rev. Mod. Phys. 91 , 045003 (2019).

Acosta, J. N. et al. Multimodal biomedical AI. Nat. Med. 28 , 1773–1784 (2022).

Alayrac, J.-B. et al. Flamingo: a visual language model for few-shot learning. In Advances in Neural Information Processing Systems 35 , 23716–23736 (2022).

Elmarakeby, H. A. et al. Biologically informed deep neural network for prostate cancer discovery. Nature 598 , 348–352 (2021).

Qin, Y. et al. A multi-scale map of cell structure fusing protein images and interactions. Nature 600 , 536–542 (2021).

Schaffer, L. V. & Ideker, T. Mapping the multiscale structure of biological systems. Cell Systems 12 , 622–635 (2021).

Stiglic, G. et al. Interpretability of machine learning-based prediction models in healthcare. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 10 , e1379 (2020).

Erion, G. et al. A cost-aware framework for the development of AI models for healthcare applications. Nat. Biomed. Eng. 6 , 1384–1398 (2022).

Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2 , 749–760 (2018).

Sanders, L. M. et al. Beyond low Earth orbit: biological research, artificial intelligence, and self-driving labs. Preprint at https://arxiv.org/abs/2112.12582 (2021).

Gagne, D. J. II et al. Interpretable deep learning for spatial analysis of severe hailstorms. Mon. Weather Rev. 147 , 2827–2845 (2019).

Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1 , 206–215 (2019).

Koh, P. W. & Liang, P. Understanding black-box predictions via influence functions. In International Conference on Machine Learning 1885–1894 (2017).

Mirzasoleiman, B., Bilmes, J. & Leskovec, J. Coresets for data-efficient training of machine learning models. In International Conference on Machine Learning 6950–6960 (2020).

Kim, B. et al. Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In International Conference on Machine Learning 2668–2677 (2018).

Silver, D. et al. Mastering the game of go without human knowledge. Nature 550 , 354–359 (2017).

Baum, Z. J. et al. Artificial intelligence in chemistry: current trends and future directions. J. Chem. Inf. Model. 61 , 3197–3212 (2021).

Finlayson, S. G. et al. Adversarial attacks on medical machine learning. Science 363 , 1287–1289 (2019).

Urbina, F. et al. Dual use of artificial-intelligence-powered drug discovery. Nat. Mach. Intell. 4 , 189–191 (2022).

Norgeot, B. et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat. Med. 26 , 1320–1324 (2020).

Download references

Acknowledgements

M.Z. gratefully acknowledges the support of the National Institutes of Health under R01HD108794, U.S. Air Force under FA8702-15-D-0001, awards from Harvard Data Science Initiative, Amazon Faculty Research, Google Research Scholar Program, Bayer Early Excellence in Science, AstraZeneca Research, Roche Alliance with Distinguished Scientists, and Kempner Institute for the Study of Natural and Artificial Intelligence. C.P.G. and Y.D. acknowledge the support from the U.S. Air Force Office of Scientific Research under Multidisciplinary University Research Initiatives Program (MURI) FA9550-18-1-0136, Defense University Research Instrumentation Program (DURIP) FA9550-21-1-0316, and awards from Scientific Autonomous Reasoning Agent (SARA), and AI for Discovery Assistant (AIDA). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funders. We thank D. Hassabis, A. Davies, S. Mohamed, Z. Li, K. Ma, Z. Qiao, E. Weinstein, A. V. Weller, Y. Zhong and A. M. Brandt for discussions on the paper.

Author information

Hanchen Wang

Present address: Department of Research and Early Development, Genentech Inc, South San Francisco, CA, USA

Present address: Department of Computer Science, Stanford University, Stanford, CA, USA

These authors contributed equally: Hanchen Wang, Tianfan Fu, Yuanqi Du

Authors and Affiliations

Department of Engineering, University of Cambridge, Cambridge, UK

Hanchen Wang & Joan Lasenby

Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA

Hanchen Wang & Anima Anandkumar

Department of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Department of Computer Science, Cornell University, Ithaca, NY, USA

Yuanqi Du & Carla P. Gomes

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

Wenhao Gao & Connor W. Coley

Department of Computer Science, Stanford University, Stanford, CA, USA

Kexin Huang & Jure Leskovec

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA

Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA

Payal Chandak

Mila – Quebec AI Institute, Montreal, Quebec, Canada

Shengchao Liu, Andreea Deac, Jian Tang & Yoshua Bengio

Université de Montréal, Montreal, Quebec, Canada

Shengchao Liu, Andreea Deac & Yoshua Bengio

Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA

Peter Van Katwyk & Karianne Bergen

Data Science Institute, Brown University, Providence, RI, USA

NVIDIA, Santa Clara, CA, USA

Anima Anandkumar

Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA

Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA

Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA

Department of Physics and Center for Data Science, New York University, New York, NY, USA

Google DeepMind, London, UK

Pushmeet Kohli & Petar Veličković

Microsoft Research, Beijing, China

Tie-Yan Liu

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

Arjun Manrai & Marinka Zitnik

Department of Systems Biology, Harvard Medical School, Boston, MA, USA

Debora Marks

Broad Institute of MIT and Harvard, Cambridge, MA, USA

Debora Marks & Marinka Zitnik

Deep Forest Sciences, Palo Alto, CA, USA

Bharath Ramsundar

BioMap, Beijing, China

Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates

University of Illinois at Urbana-Champaign, Champaign, IL, USA

HEC Montréal, Montreal, Quebec, Canada

CIFAR AI Chair, Toronto, Ontario, Canada

Department of Computer Science and Technology, University of Cambridge, Cambridge, UK

Petar Veličković

University of Amsterdam, Amsterdam, Netherlands

Max Welling

Microsoft Research Amsterdam, Amsterdam, Netherlands

DP Technology, Beijing, China

Linfeng Zhang

AI for Science Institute, Beijing, China

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA

Connor W. Coley

Harvard Data Science Initiative, Cambridge, MA, USA

Marinka Zitnik

Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the design and writing of the paper, helped shape the research, provided critical feedback, and commented on the paper and its revisions. H.W., T.F., Y.D. and M.Z conceived the study and were responsible for overall direction and planning. W.G., K.H. and Z.L. contributed equally to this work (equal second authorship) and are listed alphabetically.

Corresponding author

Correspondence to Marinka Zitnik .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature thanks Brian Gallagher and Benjamin Nachman for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Wang, H., Fu, T., Du, Y. et al. Scientific discovery in the age of artificial intelligence. Nature 620 , 47–60 (2023). https://doi.org/10.1038/s41586-023-06221-2

Download citation

Received : 30 March 2022

Accepted : 16 May 2023

Published : 02 August 2023

Issue Date : 03 August 2023

DOI : https://doi.org/10.1038/s41586-023-06221-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Antimicrobial resistance crisis: could artificial intelligence be the solution.

  • Guang-Yu Liu
  • Xiao-Fen Liu

Military Medical Research (2024)

Embracing data science in catalysis research

  • Manu Suvarna
  • Javier Pérez-Ramírez

Nature Catalysis (2024)

Automated BigSMILES conversion workflow and dataset for homopolymeric macromolecules

  • Joonbum Lee
  • Junhee Seok

Scientific Data (2024)

Techniques for supercharging academic writing with generative AI

  • Zhicheng Lin

Nature Biomedical Engineering (2024)

Memristor-based hardware accelerators for artificial intelligence

  • Takashi Ando
  • Qiangfei Xia

Nature Reviews Electrical Engineering (2024)

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

artificial intelligence for research papers

artificial intelligence for research papers

The Journal of Artificial Intelligence Research (JAIR) is dedicated to the rapid dissemination of important research results to the global artificial intelligence (AI) community. The journal’s scope encompasses all areas of AI, including agents and multi-agent systems, automated reasoning, constraint processing and search, knowledge representation, machine learning, natural language, planning and scheduling, robotics and vision, and uncertainty in AI.

Current Issue

Vol. 79 (2024)

Published: 2024-01-10

Bt-GAN: Generating Fair Synthetic Healthdata via Bias-transforming Generative Adversarial Networks

Collision avoiding max-sum for mobile sensor teams, usn: a robust imitation learning method against diverse action noise, structure in deep reinforcement learning: a survey and open problems, a map of diverse synthetic stable matching instances, digcn: a dynamic interaction graph convolutional network based on learnable proposals for object detection, iterative train scheduling under disruption with maximum satisfiability, removing bias and incentivizing precision in peer-grading, cultural bias in explainable ai research: a systematic analysis, learning to resolve social dilemmas: a survey, a principled distributional approach to trajectory similarity measurement and its application to anomaly detection, multi-modal attentive prompt learning for few-shot emotion recognition in conversations, condense: conditional density estimation for time series anomaly detection, performative ethics from within the ivory tower: how cs practitioners uphold systems of oppression, learning logic specifications for policy guidance in pomdps: an inductive logic programming approach, multi-objective reinforcement learning based on decomposition: a taxonomy and framework, can fairness be automated guidelines and opportunities for fairness-aware automl, practical and parallelizable algorithms for non-monotone submodular maximization with size constraint, exploring the tradeoff between system profit and income equality among ride-hailing drivers, on mitigating the utility-loss in differentially private learning: a new perspective by a geometrically inspired kernel approach, an algorithm with improved complexity for pebble motion/multi-agent path finding on trees, weighted, circular and semi-algebraic proofs, reinforcement learning for generative ai: state of the art, opportunities and open research challenges, human-in-the-loop reinforcement learning: a survey and position on requirements, challenges, and opportunities, boolean observation games, detecting change intervals with isolation distributional kernel, query-driven qualitative constraint acquisition, visually grounded language learning: a review of language games, datasets, tasks, and models, right place, right time: proactive multi-robot task allocation under spatiotemporal uncertainty, principles and their computational consequences for argumentation frameworks with collective attacks, the ai race: why current neural network-based architectures are a poor basis for artificial general intelligence, undesirable biases in nlp: addressing challenges of measurement.

The present and future of AI

Finale doshi-velez on how ai is shaping our lives and how we can shape ai.

image of Finale Doshi-Velez, the John L. Loeb Professor of Engineering and Applied Sciences

Finale Doshi-Velez, the John L. Loeb Professor of Engineering and Applied Sciences. (Photo courtesy of Eliza Grinnell/Harvard SEAS)

How has artificial intelligence changed and shaped our world over the last five years? How will AI continue to impact our lives in the coming years? Those were the questions addressed in the most recent report from the One Hundred Year Study on Artificial Intelligence (AI100), an ongoing project hosted at Stanford University, that will study the status of AI technology and its impacts on the world over the next 100 years.

The 2021 report is the second in a series that will be released every five years until 2116. Titled “Gathering Strength, Gathering Storms,” the report explores the various ways AI is  increasingly touching people’s lives in settings that range from  movie recommendations  and  voice assistants  to  autonomous driving  and  automated medical diagnoses .

Barbara Grosz , the Higgins Research Professor of Natural Sciences at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) is a member of the standing committee overseeing the AI100 project and Finale Doshi-Velez , Gordon McKay Professor of Computer Science, is part of the panel of interdisciplinary researchers who wrote this year’s report. 

We spoke with Doshi-Velez about the report, what it says about the role AI is currently playing in our lives, and how it will change in the future.  

Q: Let's start with a snapshot: What is the current state of AI and its potential?

Doshi-Velez: Some of the biggest changes in the last five years have been how well AIs now perform in large data regimes on specific types of tasks.  We've seen [DeepMind’s] AlphaZero become the best Go player entirely through self-play, and everyday uses of AI such as grammar checks and autocomplete, automatic personal photo organization and search, and speech recognition become commonplace for large numbers of people.  

In terms of potential, I'm most excited about AIs that might augment and assist people.  They can be used to drive insights in drug discovery, help with decision making such as identifying a menu of likely treatment options for patients, and provide basic assistance, such as lane keeping while driving or text-to-speech based on images from a phone for the visually impaired.  In many situations, people and AIs have complementary strengths. I think we're getting closer to unlocking the potential of people and AI teams.

There's a much greater recognition that we should not be waiting for AI tools to become mainstream before making sure they are ethical.

Q: Over the course of 100 years, these reports will tell the story of AI and its evolving role in society. Even though there have only been two reports, what's the story so far?

There's actually a lot of change even in five years.  The first report is fairly rosy.  For example, it mentions how algorithmic risk assessments may mitigate the human biases of judges.  The second has a much more mixed view.  I think this comes from the fact that as AI tools have come into the mainstream — both in higher stakes and everyday settings — we are appropriately much less willing to tolerate flaws, especially discriminatory ones. There's also been questions of information and disinformation control as people get their news, social media, and entertainment via searches and rankings personalized to them. So, there's a much greater recognition that we should not be waiting for AI tools to become mainstream before making sure they are ethical.

Q: What is the responsibility of institutes of higher education in preparing students and the next generation of computer scientists for the future of AI and its impact on society?

First, I'll say that the need to understand the basics of AI and data science starts much earlier than higher education!  Children are being exposed to AIs as soon as they click on videos on YouTube or browse photo albums. They need to understand aspects of AI such as how their actions affect future recommendations.

But for computer science students in college, I think a key thing that future engineers need to realize is when to demand input and how to talk across disciplinary boundaries to get at often difficult-to-quantify notions of safety, equity, fairness, etc.  I'm really excited that Harvard has the Embedded EthiCS program to provide some of this education.  Of course, this is an addition to standard good engineering practices like building robust models, validating them, and so forth, which is all a bit harder with AI.

I think a key thing that future engineers need to realize is when to demand input and how to talk across disciplinary boundaries to get at often difficult-to-quantify notions of safety, equity, fairness, etc. 

Q: Your work focuses on machine learning with applications to healthcare, which is also an area of focus of this report. What is the state of AI in healthcare? 

A lot of AI in healthcare has been on the business end, used for optimizing billing, scheduling surgeries, that sort of thing.  When it comes to AI for better patient care, which is what we usually think about, there are few legal, regulatory, and financial incentives to do so, and many disincentives. Still, there's been slow but steady integration of AI-based tools, often in the form of risk scoring and alert systems.

In the near future, two applications that I'm really excited about are triage in low-resource settings — having AIs do initial reads of pathology slides, for example, if there are not enough pathologists, or get an initial check of whether a mole looks suspicious — and ways in which AIs can help identify promising treatment options for discussion with a clinician team and patient.

Q: Any predictions for the next report?

I'll be keen to see where currently nascent AI regulation initiatives have gotten to. Accountability is such a difficult question in AI,  it's tricky to nurture both innovation and basic protections.  Perhaps the most important innovation will be in approaches for AI accountability.

Topics: AI / Machine Learning , Computer Science

Cutting-edge science delivered direct to your inbox.

Join the Harvard SEAS mailing list.

Scientist Profiles

Finale Doshi-Velez

Finale Doshi-Velez

Herchel Smith Professor of Computer Science

Press Contact

Leah Burrows | 617-496-1351 | [email protected]

Related News

Two men wearing hospital scrubs, two wearing blue jackets with the logo for the company EndoShunt, in front of medical equipment

Seven SEAS teams named President’s Innovation Challenge finalists

Start-ups will vie for up to $75,000 in prize money

Computer Science , Design , Electrical Engineering , Entrepreneurship , Events , Master of Design Engineering , Materials Science & Mechanical Engineering , MS/MBA

A group of Harvard SEAS students standing behind a wooden table, in front of a sign that says "Agents of Change"

Exploring the depths of AI

 New SEAS club spends Spring Break meeting AI technology professionals in San Francisco

AI / Machine Learning , Computer Science , Student Organizations

Head shot of SEAS Ph.D. alum Jacomo Corbo

Alumni profile: Jacomo Corbo, Ph.D. '08

Racing into the future of machine learning 

AI / Machine Learning , Computer Science

artificial intelligence for research papers

Artificial Intelligence Review

An International Science and Engineering Journal

  • Publishes critical evaluations of applications, techniques, and algorithms in the field.
  • Provides a platform for researchers and application developers.
  • Presents refereed survey and tutorial articles.
  • Offers reviews and commentary on significant developments.

Latest articles

Position adaptive residual block and knowledge complement strategy for point cloud analysis.

  • Shichao Zhang
  • Hangchi Shen

artificial intelligence for research papers

Revolutionizing personalized medicine with generative AI: a systematic review

  • Isaias Ghebrehiwet
  • Mohd Saberi Mohamad

artificial intelligence for research papers

Modified crayfish optimization algorithm for solving multiple engineering application problems

  • Xuelian Zhou
  • Abdelazim G. Hussien

artificial intelligence for research papers

A review of nature-inspired algorithms on single-objective optimization problems from 2019 to 2023

  • Sarika Jain
  • Harish Garg

artificial intelligence for research papers

UAV control in autonomous object-goal navigation: a systematic literature review

  • Angel Ayala
  • Leticia Portela
  • Francisco Cruz

artificial intelligence for research papers

Journal updates

Artificial intelligence review is now fully open access.

We are excited to announce that Artificial Intelligence Review  has now become a fully open access (OA) journal as of January 2024. This means that we will only be publishing articles as Open Access meaning content will be and freely available to readers worldwide, enabling the widest possible dissemination and reuse. 

Journal information

  • ACM Digital Library
  • Current Contents/Engineering, Computing and Technology
  • EI Compendex
  • Google Scholar
  • Japanese Science and Technology Agency (JST)
  • Norwegian Register for Scientific Journals and Series
  • OCLC WorldCat Discovery Service
  • Science Citation Index Expanded (SCIE)
  • TD Net Discovery Service
  • UGC-CARE List (India)

Rights and permissions

Springer policies

© Springer Nature B.V.

  • Find a journal
  • Publish with us
  • Track your research
  • Open access
  • Published: 18 April 2024

Research ethics and artificial intelligence for global health: perspectives from the global forum on bioethics in research

  • James Shaw 1 , 13 ,
  • Joseph Ali 2 , 3 ,
  • Caesar A. Atuire 4 , 5 ,
  • Phaik Yeong Cheah 6 ,
  • Armando Guio Español 7 ,
  • Judy Wawira Gichoya 8 ,
  • Adrienne Hunt 9 ,
  • Daudi Jjingo 10 ,
  • Katherine Littler 9 ,
  • Daniela Paolotti 11 &
  • Effy Vayena 12  

BMC Medical Ethics volume  25 , Article number:  46 ( 2024 ) Cite this article

874 Accesses

6 Altmetric

Metrics details

The ethical governance of Artificial Intelligence (AI) in health care and public health continues to be an urgent issue for attention in policy, research, and practice. In this paper we report on central themes related to challenges and strategies for promoting ethics in research involving AI in global health, arising from the Global Forum on Bioethics in Research (GFBR), held in Cape Town, South Africa in November 2022.

The GFBR is an annual meeting organized by the World Health Organization and supported by the Wellcome Trust, the US National Institutes of Health, the UK Medical Research Council (MRC) and the South African MRC. The forum aims to bring together ethicists, researchers, policymakers, research ethics committee members and other actors to engage with challenges and opportunities specifically related to research ethics. In 2022 the focus of the GFBR was “Ethics of AI in Global Health Research”. The forum consisted of 6 case study presentations, 16 governance presentations, and a series of small group and large group discussions. A total of 87 participants attended the forum from 31 countries around the world, representing disciplines of bioethics, AI, health policy, health professional practice, research funding, and bioinformatics. In this paper, we highlight central insights arising from GFBR 2022.

We describe the significance of four thematic insights arising from the forum: (1) Appropriateness of building AI, (2) Transferability of AI systems, (3) Accountability for AI decision-making and outcomes, and (4) Individual consent. We then describe eight recommendations for governance leaders to enhance the ethical governance of AI in global health research, addressing issues such as AI impact assessments, environmental values, and fair partnerships.

Conclusions

The 2022 Global Forum on Bioethics in Research illustrated several innovations in ethical governance of AI for global health research, as well as several areas in need of urgent attention internationally. This summary is intended to inform international and domestic efforts to strengthen research ethics and support the evolution of governance leadership to meet the demands of AI in global health research.

Peer Review reports

Introduction

The ethical governance of Artificial Intelligence (AI) in health care and public health continues to be an urgent issue for attention in policy, research, and practice [ 1 , 2 , 3 ]. Beyond the growing number of AI applications being implemented in health care, capabilities of AI models such as Large Language Models (LLMs) expand the potential reach and significance of AI technologies across health-related fields [ 4 , 5 ]. Discussion about effective, ethical governance of AI technologies has spanned a range of governance approaches, including government regulation, organizational decision-making, professional self-regulation, and research ethics review [ 6 , 7 , 8 ]. In this paper, we report on central themes related to challenges and strategies for promoting ethics in research involving AI in global health research, arising from the Global Forum on Bioethics in Research (GFBR), held in Cape Town, South Africa in November 2022. Although applications of AI for research, health care, and public health are diverse and advancing rapidly, the insights generated at the forum remain highly relevant from a global health perspective. After summarizing important context for work in this domain, we highlight categories of ethical issues emphasized at the forum for attention from a research ethics perspective internationally. We then outline strategies proposed for research, innovation, and governance to support more ethical AI for global health.

In this paper, we adopt the definition of AI systems provided by the Organization for Economic Cooperation and Development (OECD) as our starting point. Their definition states that an AI system is “a machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations, or decisions influencing real or virtual environments. AI systems are designed to operate with varying levels of autonomy” [ 9 ]. The conceptualization of an algorithm as helping to constitute an AI system, along with hardware, other elements of software, and a particular context of use, illustrates the wide variety of ways in which AI can be applied. We have found it useful to differentiate applications of AI in research as those classified as “AI systems for discovery” and “AI systems for intervention”. An AI system for discovery is one that is intended to generate new knowledge, for example in drug discovery or public health research in which researchers are seeking potential targets for intervention, innovation, or further research. An AI system for intervention is one that directly contributes to enacting an intervention in a particular context, for example informing decision-making at the point of care or assisting with accuracy in a surgical procedure.

The mandate of the GFBR is to take a broad view of what constitutes research and its regulation in global health, with special attention to bioethics in Low- and Middle- Income Countries. AI as a group of technologies demands such a broad view. AI development for health occurs in a variety of environments, including universities and academic health sciences centers where research ethics review remains an important element of the governance of science and innovation internationally [ 10 , 11 ]. In these settings, research ethics committees (RECs; also known by different names such as Institutional Review Boards or IRBs) make decisions about the ethical appropriateness of projects proposed by researchers and other institutional members, ultimately determining whether a given project is allowed to proceed on ethical grounds [ 12 ].

However, research involving AI for health also takes place in large corporations and smaller scale start-ups, which in some jurisdictions fall outside the scope of research ethics regulation. In the domain of AI, the question of what constitutes research also becomes blurred. For example, is the development of an algorithm itself considered a part of the research process? Or only when that algorithm is tested under the formal constraints of a systematic research methodology? In this paper we take an inclusive view, in which AI development is included in the definition of research activity and within scope for our inquiry, regardless of the setting in which it takes place. This broad perspective characterizes the approach to “research ethics” we take in this paper, extending beyond the work of RECs to include the ethical analysis of the wide range of activities that constitute research as the generation of new knowledge and intervention in the world.

Ethical governance of AI in global health

The ethical governance of AI for global health has been widely discussed in recent years. The World Health Organization (WHO) released its guidelines on ethics and governance of AI for health in 2021, endorsing a set of six ethical principles and exploring the relevance of those principles through a variety of use cases. The WHO guidelines also provided an overview of AI governance, defining governance as covering “a range of steering and rule-making functions of governments and other decision-makers, including international health agencies, for the achievement of national health policy objectives conducive to universal health coverage.” (p. 81) The report usefully provided a series of recommendations related to governance of seven domains pertaining to AI for health: data, benefit sharing, the private sector, the public sector, regulation, policy observatories/model legislation, and global governance. The report acknowledges that much work is yet to be done to advance international cooperation on AI governance, especially related to prioritizing voices from Low- and Middle-Income Countries (LMICs) in global dialogue.

One important point emphasized in the WHO report that reinforces the broader literature on global governance of AI is the distribution of responsibility across a wide range of actors in the AI ecosystem. This is especially important to highlight when focused on research for global health, which is specifically about work that transcends national borders. Alami et al. (2020) discussed the unique risks raised by AI research in global health, ranging from the unavailability of data in many LMICs required to train locally relevant AI models to the capacity of health systems to absorb new AI technologies that demand the use of resources from elsewhere in the system. These observations illustrate the need to identify the unique issues posed by AI research for global health specifically, and the strategies that can be employed by all those implicated in AI governance to promote ethically responsible use of AI in global health research.

RECs and the regulation of research involving AI

RECs represent an important element of the governance of AI for global health research, and thus warrant further commentary as background to our paper. Despite the importance of RECs, foundational questions have been raised about their capabilities to accurately understand and address ethical issues raised by studies involving AI. Rahimzadeh et al. (2023) outlined how RECs in the United States are under-prepared to align with recent federal policy requiring that RECs review data sharing and management plans with attention to the unique ethical issues raised in AI research for health [ 13 ]. Similar research in South Africa identified variability in understanding of existing regulations and ethical issues associated with health-related big data sharing and management among research ethics committee members [ 14 , 15 ]. The effort to address harms accruing to groups or communities as opposed to individuals whose data are included in AI research has also been identified as a unique challenge for RECs [ 16 , 17 ]. Doerr and Meeder (2022) suggested that current regulatory frameworks for research ethics might actually prevent RECs from adequately addressing such issues, as they are deemed out of scope of REC review [ 16 ]. Furthermore, research in the United Kingdom and Canada has suggested that researchers using AI methods for health tend to distinguish between ethical issues and social impact of their research, adopting an overly narrow view of what constitutes ethical issues in their work [ 18 ].

The challenges for RECs in adequately addressing ethical issues in AI research for health care and public health exceed a straightforward survey of ethical considerations. As Ferretti et al. (2021) contend, some capabilities of RECs adequately cover certain issues in AI-based health research, such as the common occurrence of conflicts of interest where researchers who accept funds from commercial technology providers are implicitly incentivized to produce results that align with commercial interests [ 12 ]. However, some features of REC review require reform to adequately meet ethical needs. Ferretti et al. outlined weaknesses of RECs that are longstanding and those that are novel to AI-related projects, proposing a series of directions for development that are regulatory, procedural, and complementary to REC functionality. The work required on a global scale to update the REC function in response to the demands of research involving AI is substantial.

These issues take greater urgency in the context of global health [ 19 ]. Teixeira da Silva (2022) described the global practice of “ethics dumping”, where researchers from high income countries bring ethically contentious practices to RECs in low-income countries as a strategy to gain approval and move projects forward [ 20 ]. Although not yet systematically documented in AI research for health, risk of ethics dumping in AI research is high. Evidence is already emerging of practices of “health data colonialism”, in which AI researchers and developers from large organizations in high-income countries acquire data to build algorithms in LMICs to avoid stricter regulations [ 21 ]. This specific practice is part of a larger collection of practices that characterize health data colonialism, involving the broader exploitation of data and the populations they represent primarily for commercial gain [ 21 , 22 ]. As an additional complication, AI algorithms trained on data from high-income contexts are unlikely to apply in straightforward ways to LMIC settings [ 21 , 23 ]. In the context of global health, there is widespread acknowledgement about the need to not only enhance the knowledge base of REC members about AI-based methods internationally, but to acknowledge the broader shifts required to encourage their capabilities to more fully address these and other ethical issues associated with AI research for health [ 8 ].

Although RECs are an important part of the story of the ethical governance of AI for global health research, they are not the only part. The responsibilities of supra-national entities such as the World Health Organization, national governments, organizational leaders, commercial AI technology providers, health care professionals, and other groups continue to be worked out internationally. In this context of ongoing work, examining issues that demand attention and strategies to address them remains an urgent and valuable task.

The GFBR is an annual meeting organized by the World Health Organization and supported by the Wellcome Trust, the US National Institutes of Health, the UK Medical Research Council (MRC) and the South African MRC. The forum aims to bring together ethicists, researchers, policymakers, REC members and other actors to engage with challenges and opportunities specifically related to research ethics. Each year the GFBR meeting includes a series of case studies and keynotes presented in plenary format to an audience of approximately 100 people who have applied and been competitively selected to attend, along with small-group breakout discussions to advance thinking on related issues. The specific topic of the forum changes each year, with past topics including ethical issues in research with people living with mental health conditions (2021), genome editing (2019), and biobanking/data sharing (2018). The forum is intended to remain grounded in the practical challenges of engaging in research ethics, with special interest in low resource settings from a global health perspective. A post-meeting fellowship scheme is open to all LMIC participants, providing a unique opportunity to apply for funding to further explore and address the ethical challenges that are identified during the meeting.

In 2022, the focus of the GFBR was “Ethics of AI in Global Health Research”. The forum consisted of 6 case study presentations (both short and long form) reporting on specific initiatives related to research ethics and AI for health, and 16 governance presentations (both short and long form) reporting on actual approaches to governing AI in different country settings. A keynote presentation from Professor Effy Vayena addressed the topic of the broader context for AI ethics in a rapidly evolving field. A total of 87 participants attended the forum from 31 countries around the world, representing disciplines of bioethics, AI, health policy, health professional practice, research funding, and bioinformatics. The 2-day forum addressed a wide range of themes. The conference report provides a detailed overview of each of the specific topics addressed while a policy paper outlines the cross-cutting themes (both documents are available at the GFBR website: https://www.gfbr.global/past-meetings/16th-forum-cape-town-south-africa-29-30-november-2022/ ). As opposed to providing a detailed summary in this paper, we aim to briefly highlight central issues raised, solutions proposed, and the challenges facing the research ethics community in the years to come.

In this way, our primary aim in this paper is to present a synthesis of the challenges and opportunities raised at the GFBR meeting and in the planning process, followed by our reflections as a group of authors on their significance for governance leaders in the coming years. We acknowledge that the views represented at the meeting and in our results are a partial representation of the universe of views on this topic; however, the GFBR leadership invested a great deal of resources in convening a deeply diverse and thoughtful group of researchers and practitioners working on themes of bioethics related to AI for global health including those based in LMICs. We contend that it remains rare to convene such a strong group for an extended time and believe that many of the challenges and opportunities raised demand attention for more ethical futures of AI for health. Nonetheless, our results are primarily descriptive and are thus not explicitly grounded in a normative argument. We make effort in the Discussion section to contextualize our results by describing their significance and connecting them to broader efforts to reform global health research and practice.

Uniquely important ethical issues for AI in global health research

Presentations and group dialogue over the course of the forum raised several issues for consideration, and here we describe four overarching themes for the ethical governance of AI in global health research. Brief descriptions of each issue can be found in Table  1 . Reports referred to throughout the paper are available at the GFBR website provided above.

The first overarching thematic issue relates to the appropriateness of building AI technologies in response to health-related challenges in the first place. Case study presentations referred to initiatives where AI technologies were highly appropriate, such as in ear shape biometric identification to more accurately link electronic health care records to individual patients in Zambia (Alinani Simukanga). Although important ethical issues were raised with respect to privacy, trust, and community engagement in this initiative, the AI-based solution was appropriately matched to the challenge of accurately linking electronic records to specific patient identities. In contrast, forum participants raised questions about the appropriateness of an initiative using AI to improve the quality of handwashing practices in an acute care hospital in India (Niyoshi Shah), which led to gaming the algorithm. Overall, participants acknowledged the dangers of techno-solutionism, in which AI researchers and developers treat AI technologies as the most obvious solutions to problems that in actuality demand much more complex strategies to address [ 24 ]. However, forum participants agreed that RECs in different contexts have differing degrees of power to raise issues of the appropriateness of an AI-based intervention.

The second overarching thematic issue related to whether and how AI-based systems transfer from one national health context to another. One central issue raised by a number of case study presentations related to the challenges of validating an algorithm with data collected in a local environment. For example, one case study presentation described a project that would involve the collection of personally identifiable data for sensitive group identities, such as tribe, clan, or religion, in the jurisdictions involved (South Africa, Nigeria, Tanzania, Uganda and the US; Gakii Masunga). Doing so would enable the team to ensure that those groups were adequately represented in the dataset to ensure the resulting algorithm was not biased against specific community groups when deployed in that context. However, some members of these communities might desire to be represented in the dataset, whereas others might not, illustrating the need to balance autonomy and inclusivity. It was also widely recognized that collecting these data is an immense challenge, particularly when historically oppressive practices have led to a low-trust environment for international organizations and the technologies they produce. It is important to note that in some countries such as South Africa and Rwanda, it is illegal to collect information such as race and tribal identities, re-emphasizing the importance for cultural awareness and avoiding “one size fits all” solutions.

The third overarching thematic issue is related to understanding accountabilities for both the impacts of AI technologies and governance decision-making regarding their use. Where global health research involving AI leads to longer-term harms that might fall outside the usual scope of issues considered by a REC, who is to be held accountable, and how? This question was raised as one that requires much further attention, with law being mixed internationally regarding the mechanisms available to hold researchers, innovators, and their institutions accountable over the longer term. However, it was recognized in breakout group discussion that many jurisdictions are developing strong data protection regimes related specifically to international collaboration for research involving health data. For example, Kenya’s Data Protection Act requires that any internationally funded projects have a local principal investigator who will hold accountability for how data are shared and used [ 25 ]. The issue of research partnerships with commercial entities was raised by many participants in the context of accountability, pointing toward the urgent need for clear principles related to strategies for engagement with commercial technology companies in global health research.

The fourth and final overarching thematic issue raised here is that of consent. The issue of consent was framed by the widely shared recognition that models of individual, explicit consent might not produce a supportive environment for AI innovation that relies on the secondary uses of health-related datasets to build AI algorithms. Given this recognition, approaches such as community oversight of health data uses were suggested as a potential solution. However, the details of implementing such community oversight mechanisms require much further attention, particularly given the unique perspectives on health data in different country settings in global health research. Furthermore, some uses of health data do continue to require consent. One case study of South Africa, Nigeria, Kenya, Ethiopia and Uganda suggested that when health data are shared across borders, individual consent remains necessary when data is transferred from certain countries (Nezerith Cengiz). Broader clarity is necessary to support the ethical governance of health data uses for AI in global health research.

Recommendations for ethical governance of AI in global health research

Dialogue at the forum led to a range of suggestions for promoting ethical conduct of AI research for global health, related to the various roles of actors involved in the governance of AI research broadly defined. The strategies are written for actors we refer to as “governance leaders”, those people distributed throughout the AI for global health research ecosystem who are responsible for ensuring the ethical and socially responsible conduct of global health research involving AI (including researchers themselves). These include RECs, government regulators, health care leaders, health professionals, corporate social accountability officers, and others. Enacting these strategies would bolster the ethical governance of AI for global health more generally, enabling multiple actors to fulfill their roles related to governing research and development activities carried out across multiple organizations, including universities, academic health sciences centers, start-ups, and technology corporations. Specific suggestions are summarized in Table  2 .

First, forum participants suggested that governance leaders including RECs, should remain up to date on recent advances in the regulation of AI for health. Regulation of AI for health advances rapidly and takes on different forms in jurisdictions around the world. RECs play an important role in governance, but only a partial role; it was deemed important for RECs to acknowledge how they fit within a broader governance ecosystem in order to more effectively address the issues within their scope. Not only RECs but organizational leaders responsible for procurement, researchers, and commercial actors should all commit to efforts to remain up to date about the relevant approaches to regulating AI for health care and public health in jurisdictions internationally. In this way, governance can more adequately remain up to date with advances in regulation.

Second, forum participants suggested that governance leaders should focus on ethical governance of health data as a basis for ethical global health AI research. Health data are considered the foundation of AI development, being used to train AI algorithms for various uses [ 26 ]. By focusing on ethical governance of health data generation, sharing, and use, multiple actors will help to build an ethical foundation for AI development among global health researchers.

Third, forum participants believed that governance processes should incorporate AI impact assessments where appropriate. An AI impact assessment is the process of evaluating the potential effects, both positive and negative, of implementing an AI algorithm on individuals, society, and various stakeholders, generally over time frames specified in advance of implementation [ 27 ]. Although not all types of AI research in global health would warrant an AI impact assessment, this is especially relevant for those studies aiming to implement an AI system for intervention into health care or public health. Organizations such as RECs can use AI impact assessments to boost understanding of potential harms at the outset of a research project, encouraging researchers to more deeply consider potential harms in the development of their study.

Fourth, forum participants suggested that governance decisions should incorporate the use of environmental impact assessments, or at least the incorporation of environment values when assessing the potential impact of an AI system. An environmental impact assessment involves evaluating and anticipating the potential environmental effects of a proposed project to inform ethical decision-making that supports sustainability [ 28 ]. Although a relatively new consideration in research ethics conversations [ 29 ], the environmental impact of building technologies is a crucial consideration for the public health commitment to environmental sustainability. Governance leaders can use environmental impact assessments to boost understanding of potential environmental harms linked to AI research projects in global health over both the shorter and longer terms.

Fifth, forum participants suggested that governance leaders should require stronger transparency in the development of AI algorithms in global health research. Transparency was considered essential in the design and development of AI algorithms for global health to ensure ethical and accountable decision-making throughout the process. Furthermore, whether and how researchers have considered the unique contexts into which such algorithms may be deployed can be surfaced through stronger transparency, for example in describing what primary considerations were made at the outset of the project and which stakeholders were consulted along the way. Sharing information about data provenance and methods used in AI development will also enhance the trustworthiness of the AI-based research process.

Sixth, forum participants suggested that governance leaders can encourage or require community engagement at various points throughout an AI project. It was considered that engaging patients and communities is crucial in AI algorithm development to ensure that the technology aligns with community needs and values. However, participants acknowledged that this is not a straightforward process. Effective community engagement requires lengthy commitments to meeting with and hearing from diverse communities in a given setting, and demands a particular set of skills in communication and dialogue that are not possessed by all researchers. Encouraging AI researchers to begin this process early and build long-term partnerships with community members is a promising strategy to deepen community engagement in AI research for global health. One notable recommendation was that research funders have an opportunity to incentivize and enable community engagement with funds dedicated to these activities in AI research in global health.

Seventh, forum participants suggested that governance leaders can encourage researchers to build strong, fair partnerships between institutions and individuals across country settings. In a context of longstanding imbalances in geopolitical and economic power, fair partnerships in global health demand a priori commitments to share benefits related to advances in medical technologies, knowledge, and financial gains. Although enforcement of this point might be beyond the remit of RECs, commentary will encourage researchers to consider stronger, fairer partnerships in global health in the longer term.

Eighth, it became evident that it is necessary to explore new forms of regulatory experimentation given the complexity of regulating a technology of this nature. In addition, the health sector has a series of particularities that make it especially complicated to generate rules that have not been previously tested. Several participants highlighted the desire to promote spaces for experimentation such as regulatory sandboxes or innovation hubs in health. These spaces can have several benefits for addressing issues surrounding the regulation of AI in the health sector, such as: (i) increasing the capacities and knowledge of health authorities about this technology; (ii) identifying the major problems surrounding AI regulation in the health sector; (iii) establishing possibilities for exchange and learning with other authorities; (iv) promoting innovation and entrepreneurship in AI in health; and (vi) identifying the need to regulate AI in this sector and update other existing regulations.

Ninth and finally, forum participants believed that the capabilities of governance leaders need to evolve to better incorporate expertise related to AI in ways that make sense within a given jurisdiction. With respect to RECs, for example, it might not make sense for every REC to recruit a member with expertise in AI methods. Rather, it will make more sense in some jurisdictions to consult with members of the scientific community with expertise in AI when research protocols are submitted that demand such expertise. Furthermore, RECs and other approaches to research governance in jurisdictions around the world will need to evolve in order to adopt the suggestions outlined above, developing processes that apply specifically to the ethical governance of research using AI methods in global health.

Research involving the development and implementation of AI technologies continues to grow in global health, posing important challenges for ethical governance of AI in global health research around the world. In this paper we have summarized insights from the 2022 GFBR, focused specifically on issues in research ethics related to AI for global health research. We summarized four thematic challenges for governance related to AI in global health research and nine suggestions arising from presentations and dialogue at the forum. In this brief discussion section, we present an overarching observation about power imbalances that frames efforts to evolve the role of governance in global health research, and then outline two important opportunity areas as the field develops to meet the challenges of AI in global health research.

Dialogue about power is not unfamiliar in global health, especially given recent contributions exploring what it would mean to de-colonize global health research, funding, and practice [ 30 , 31 ]. Discussions of research ethics applied to AI research in global health contexts are deeply infused with power imbalances. The existing context of global health is one in which high-income countries primarily located in the “Global North” charitably invest in projects taking place primarily in the “Global South” while recouping knowledge, financial, and reputational benefits [ 32 ]. With respect to AI development in particular, recent examples of digital colonialism frame dialogue about global partnerships, raising attention to the role of large commercial entities and global financial capitalism in global health research [ 21 , 22 ]. Furthermore, the power of governance organizations such as RECs to intervene in the process of AI research in global health varies widely around the world, depending on the authorities assigned to them by domestic research governance policies. These observations frame the challenges outlined in our paper, highlighting the difficulties associated with making meaningful change in this field.

Despite these overarching challenges of the global health research context, there are clear strategies for progress in this domain. Firstly, AI innovation is rapidly evolving, which means approaches to the governance of AI for health are rapidly evolving too. Such rapid evolution presents an important opportunity for governance leaders to clarify their vision and influence over AI innovation in global health research, boosting the expertise, structure, and functionality required to meet the demands of research involving AI. Secondly, the research ethics community has strong international ties, linked to a global scholarly community that is committed to sharing insights and best practices around the world. This global community can be leveraged to coordinate efforts to produce advances in the capabilities and authorities of governance leaders to meaningfully govern AI research for global health given the challenges summarized in our paper.

Limitations

Our paper includes two specific limitations that we address explicitly here. First, it is still early in the lifetime of the development of applications of AI for use in global health, and as such, the global community has had limited opportunity to learn from experience. For example, there were many fewer case studies, which detail experiences with the actual implementation of an AI technology, submitted to GFBR 2022 for consideration than was expected. In contrast, there were many more governance reports submitted, which detail the processes and outputs of governance processes that anticipate the development and dissemination of AI technologies. This observation represents both a success and a challenge. It is a success that so many groups are engaging in anticipatory governance of AI technologies, exploring evidence of their likely impacts and governing technologies in novel and well-designed ways. It is a challenge that there is little experience to build upon of the successful implementation of AI technologies in ways that have limited harms while promoting innovation. Further experience with AI technologies in global health will contribute to revising and enhancing the challenges and recommendations we have outlined in our paper.

Second, global trends in the politics and economics of AI technologies are evolving rapidly. Although some nations are advancing detailed policy approaches to regulating AI more generally, including for uses in health care and public health, the impacts of corporate investments in AI and political responses related to governance remain to be seen. The excitement around large language models (LLMs) and large multimodal models (LMMs) has drawn deeper attention to the challenges of regulating AI in any general sense, opening dialogue about health sector-specific regulations. The direction of this global dialogue, strongly linked to high-profile corporate actors and multi-national governance institutions, will strongly influence the development of boundaries around what is possible for the ethical governance of AI for global health. We have written this paper at a point when these developments are proceeding rapidly, and as such, we acknowledge that our recommendations will need updating as the broader field evolves.

Ultimately, coordination and collaboration between many stakeholders in the research ethics ecosystem will be necessary to strengthen the ethical governance of AI in global health research. The 2022 GFBR illustrated several innovations in ethical governance of AI for global health research, as well as several areas in need of urgent attention internationally. This summary is intended to inform international and domestic efforts to strengthen research ethics and support the evolution of governance leadership to meet the demands of AI in global health research.

Data availability

All data and materials analyzed to produce this paper are available on the GFBR website: https://www.gfbr.global/past-meetings/16th-forum-cape-town-south-africa-29-30-november-2022/ .

Clark P, Kim J, Aphinyanaphongs Y, Marketing, Food US. Drug Administration Clearance of Artificial Intelligence and Machine Learning Enabled Software in and as Medical devices: a systematic review. JAMA Netw Open. 2023;6(7):e2321792–2321792.

Article   Google Scholar  

Potnis KC, Ross JS, Aneja S, Gross CP, Richman IB. Artificial intelligence in breast cancer screening: evaluation of FDA device regulation and future recommendations. JAMA Intern Med. 2022;182(12):1306–12.

Siala H, Wang Y. SHIFTing artificial intelligence to be responsible in healthcare: a systematic review. Soc Sci Med. 2022;296:114782.

Yang X, Chen A, PourNejatian N, Shin HC, Smith KE, Parisien C, et al. A large language model for electronic health records. NPJ Digit Med. 2022;5(1):194.

Meskó B, Topol EJ. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit Med. 2023;6(1):120.

Jobin A, Ienca M, Vayena E. The global landscape of AI ethics guidelines. Nat Mach Intell. 2019;1(9):389–99.

Minssen T, Vayena E, Cohen IG. The challenges for Regulating Medical Use of ChatGPT and other large Language models. JAMA. 2023.

Ho CWL, Malpani R. Scaling up the research ethics framework for healthcare machine learning as global health ethics and governance. Am J Bioeth. 2022;22(5):36–8.

Yeung K. Recommendation of the council on artificial intelligence (OECD). Int Leg Mater. 2020;59(1):27–34.

Maddox TM, Rumsfeld JS, Payne PR. Questions for artificial intelligence in health care. JAMA. 2019;321(1):31–2.

Dzau VJ, Balatbat CA, Ellaissi WF. Revisiting academic health sciences systems a decade later: discovery to health to population to society. Lancet. 2021;398(10318):2300–4.

Ferretti A, Ienca M, Sheehan M, Blasimme A, Dove ES, Farsides B, et al. Ethics review of big data research: what should stay and what should be reformed? BMC Med Ethics. 2021;22(1):1–13.

Rahimzadeh V, Serpico K, Gelinas L. Institutional review boards need new skills to review data sharing and management plans. Nat Med. 2023;1–3.

Kling S, Singh S, Burgess TL, Nair G. The role of an ethics advisory committee in data science research in sub-saharan Africa. South Afr J Sci. 2023;119(5–6):1–3.

Google Scholar  

Cengiz N, Kabanda SM, Esterhuizen TM, Moodley K. Exploring perspectives of research ethics committee members on the governance of big data in sub-saharan Africa. South Afr J Sci. 2023;119(5–6):1–9.

Doerr M, Meeder S. Big health data research and group harm: the scope of IRB review. Ethics Hum Res. 2022;44(4):34–8.

Ballantyne A, Stewart C. Big data and public-private partnerships in healthcare and research: the application of an ethics framework for big data in health and research. Asian Bioeth Rev. 2019;11(3):315–26.

Samuel G, Chubb J, Derrick G. Boundaries between research ethics and ethical research use in artificial intelligence health research. J Empir Res Hum Res Ethics. 2021;16(3):325–37.

Murphy K, Di Ruggiero E, Upshur R, Willison DJ, Malhotra N, Cai JC, et al. Artificial intelligence for good health: a scoping review of the ethics literature. BMC Med Ethics. 2021;22(1):1–17.

Teixeira da Silva JA. Handling ethics dumping and neo-colonial research: from the laboratory to the academic literature. J Bioethical Inq. 2022;19(3):433–43.

Ferryman K. The dangers of data colonialism in precision public health. Glob Policy. 2021;12:90–2.

Couldry N, Mejias UA. Data colonialism: rethinking big data’s relation to the contemporary subject. Telev New Media. 2019;20(4):336–49.

Organization WH. Ethics and governance of artificial intelligence for health: WHO guidance. 2021.

Metcalf J, Moss E. Owning ethics: corporate logics, silicon valley, and the institutionalization of ethics. Soc Res Int Q. 2019;86(2):449–76.

Data Protection Act - OFFICE OF THE DATA PROTECTION COMMISSIONER KENYA [Internet]. 2021 [cited 2023 Sep 30]. https://www.odpc.go.ke/dpa-act/ .

Sharon T, Lucivero F. Introduction to the special theme: the expansion of the health data ecosystem–rethinking data ethics and governance. Big Data & Society. Volume 6. London, England: SAGE Publications Sage UK; 2019. p. 2053951719852969.

Reisman D, Schultz J, Crawford K, Whittaker M. Algorithmic impact assessments: a practical Framework for Public Agency. AI Now. 2018.

Morgan RK. Environmental impact assessment: the state of the art. Impact Assess Proj Apprais. 2012;30(1):5–14.

Samuel G, Richie C. Reimagining research ethics to include environmental sustainability: a principled approach, including a case study of data-driven health research. J Med Ethics. 2023;49(6):428–33.

Kwete X, Tang K, Chen L, Ren R, Chen Q, Wu Z, et al. Decolonizing global health: what should be the target of this movement and where does it lead us? Glob Health Res Policy. 2022;7(1):3.

Abimbola S, Asthana S, Montenegro C, Guinto RR, Jumbam DT, Louskieter L, et al. Addressing power asymmetries in global health: imperatives in the wake of the COVID-19 pandemic. PLoS Med. 2021;18(4):e1003604.

Benatar S. Politics, power, poverty and global health: systems and frames. Int J Health Policy Manag. 2016;5(10):599.

Download references

Acknowledgements

We would like to acknowledge the outstanding contributions of the attendees of GFBR 2022 in Cape Town, South Africa. This paper is authored by members of the GFBR 2022 Planning Committee. We would like to acknowledge additional members Tamra Lysaght, National University of Singapore, and Niresh Bhagwandin, South African Medical Research Council, for their input during the planning stages and as reviewers of the applications to attend the Forum.

This work was supported by Wellcome [222525/Z/21/Z], the US National Institutes of Health, the UK Medical Research Council (part of UK Research and Innovation), and the South African Medical Research Council through funding to the Global Forum on Bioethics in Research.

Author information

Authors and affiliations.

Department of Physical Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada

Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA

Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA

Department of Philosophy and Classics, University of Ghana, Legon-Accra, Ghana

Caesar A. Atuire

Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

Phaik Yeong Cheah

Berkman Klein Center, Harvard University, Bogotá, Colombia

Armando Guio Español

Department of Radiology and Informatics, Emory University School of Medicine, Atlanta, GA, USA

Judy Wawira Gichoya

Health Ethics & Governance Unit, Research for Health Department, Science Division, World Health Organization, Geneva, Switzerland

Adrienne Hunt & Katherine Littler

African Center of Excellence in Bioinformatics and Data Intensive Science, Infectious Diseases Institute, Makerere University, Kampala, Uganda

Daudi Jjingo

ISI Foundation, Turin, Italy

Daniela Paolotti

Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland

Effy Vayena

Joint Centre for Bioethics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada

You can also search for this author in PubMed   Google Scholar

Contributions

JS led the writing, contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. JA contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. CA contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. PYC contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. AE contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. JWG contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. AH contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. DJ contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. KL contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. DP contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper. EV contributed to conceptualization and analysis, critically reviewed and provided feedback on drafts of this paper, and provided final approval of the paper.

Corresponding author

Correspondence to James Shaw .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Shaw, J., Ali, J., Atuire, C.A. et al. Research ethics and artificial intelligence for global health: perspectives from the global forum on bioethics in research. BMC Med Ethics 25 , 46 (2024). https://doi.org/10.1186/s12910-024-01044-w

Download citation

Received : 31 October 2023

Accepted : 01 April 2024

Published : 18 April 2024

DOI : https://doi.org/10.1186/s12910-024-01044-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Artificial intelligence
  • Machine learning
  • Research ethics
  • Global health

BMC Medical Ethics

ISSN: 1472-6939

artificial intelligence for research papers

AI Index Report

Welcome to the seventh edition of the AI Index report. The 2024 Index is our most comprehensive to date and arrives at an important moment when AI’s influence on society has never been more pronounced. This year, we have broadened our scope to more extensively cover essential trends such as technical advancements in AI, public perceptions of the technology, and the geopolitical dynamics surrounding its development. Featuring more original data than ever before, this edition introduces new estimates on AI training costs, detailed analyses of the responsible AI landscape, and an entirely new chapter dedicated to AI’s impact on science and medicine.

Read the 2024 AI Index Report

The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI.

The AI Index is recognized globally as one of the most credible and authoritative sources for data and insights on artificial intelligence. Previous editions have been cited in major newspapers, including the The New York Times, Bloomberg, and The Guardian, have amassed hundreds of academic citations, and been referenced by high-level policymakers in the United States, the United Kingdom, and the European Union, among other places. This year’s edition surpasses all previous ones in size, scale, and scope, reflecting the growing significance that AI is coming to hold in all of our lives.

Steering Committee Co-Directors

Jack Clark

Ray Perrault

Steering committee members.

Erik Brynjolfsson

Erik Brynjolfsson

John Etchemendy

John Etchemendy

Katrina light

Katrina Ligett

Terah Lyons

Terah Lyons

James Manyika

James Manyika

Juan Carlos Niebles

Juan Carlos Niebles

Vanessa Parli

Vanessa Parli

Yoav Shoham

Yoav Shoham

Russell Wald

Russell Wald

Staff members.

Loredana Fattorini

Loredana Fattorini

Nestor Maslej

Nestor Maslej

Letter from the co-directors.

A decade ago, the best AI systems in the world were unable to classify objects in images at a human level. AI struggled with language comprehension and could not solve math problems. Today, AI systems routinely exceed human performance on standard benchmarks.

Progress accelerated in 2023. New state-of-the-art systems like GPT-4, Gemini, and Claude 3 are impressively multimodal: They can generate fluent text in dozens of languages, process audio, and even explain memes. As AI has improved, it has increasingly forced its way into our lives. Companies are racing to build AI-based products, and AI is increasingly being used by the general public. But current AI technology still has significant problems. It cannot reliably deal with facts, perform complex reasoning, or explain its conclusions.

AI faces two interrelated futures. First, technology continues to improve and is increasingly used, having major consequences for productivity and employment. It can be put to both good and bad uses. In the second future, the adoption of AI is constrained by the limitations of the technology. Regardless of which future unfolds, governments are increasingly concerned. They are stepping in to encourage the upside, such as funding university R&D and incentivizing private investment. Governments are also aiming to manage the potential downsides, such as impacts on employment, privacy concerns, misinformation, and intellectual property rights.

As AI rapidly evolves, the AI Index aims to help the AI community, policymakers, business leaders, journalists, and the general public navigate this complex landscape. It provides ongoing, objective snapshots tracking several key areas: technical progress in AI capabilities, the community and investments driving AI development and deployment, public opinion on current and potential future impacts, and policy measures taken to stimulate AI innovation while managing its risks and challenges. By comprehensively monitoring the AI ecosystem, the Index serves as an important resource for understanding this transformative technological force.

On the technical front, this year’s AI Index reports that the number of new large language models released worldwide in 2023 doubled over the previous year. Two-thirds were open-source, but the highest-performing models came from industry players with closed systems. Gemini Ultra became the first LLM to reach human-level performance on the Massive Multitask Language Understanding (MMLU) benchmark; performance on the benchmark has improved by 15 percentage points since last year. Additionally, GPT-4 achieved an impressive 0.97 mean win rate score on the comprehensive Holistic Evaluation of Language Models (HELM) benchmark, which includes MMLU among other evaluations.

Although global private investment in AI decreased for the second consecutive year, investment in generative AI skyrocketed. More Fortune 500 earnings calls mentioned AI than ever before, and new studies show that AI tangibly boosts worker productivity. On the policymaking front, global mentions of AI in legislative proceedings have never been higher. U.S. regulators passed more AI-related regulations in 2023 than ever before. Still, many expressed concerns about AI’s ability to generate deepfakes and impact elections. The public became more aware of AI, and studies suggest that they responded with nervousness.

Ray Perrault Co-director, AI Index

Our Supporting Partners

Supporting Partner Logos

Analytics & Research Partners

artificial intelligence for research papers

Stay up to date on the AI Index by subscribing to the  Stanford HAI newsletter.

Artificial Intelligence (Generative) Resources

Ai research tools, additional ai tools.

  • How to Craft Prompts
  • Research Resources on AI
  • Latest News on AI
  • Ethics & AI
  • Citing Generative AI
  • AI, Authorship, & Copyright
  • Campus Resources and Policies

About This Table

The resources described in the table represent an incomplete list of tools specifically geared towards exploring and synthesizing research. As generative AI becomes more integrated in online search tools , even the very early stages of research and topic development could incorporate AI. If you have any questions about using these tools for your research, please Email a Librarian .

AI tools for research can help you to discover new sources for your literature review or research assignment. These tools will synthesize information from large databases of scholarly output with the aim of finding the most relevant articles and saving researchers' time. As with our research databases or any other search tool, however, it's important not to rely on one tool for all of your research, as you will risk missing important information on your topic of interest.

Georgetown University's Center for New Designs in Learning and Scholarship (CNDLS) offers a list of additional AI tools with a range of different purposes including visual design, writing, time management, and more.

  • << Previous: Home
  • Next: How to Craft Prompts >>
  • Last Updated: Apr 22, 2024 2:36 PM
  • URL: https://guides.library.georgetown.edu/ai

Creative Commons

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Innovation (Camb)
  • v.2(4); 2021 Nov 28

Artificial intelligence: A powerful paradigm for scientific research

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

35 University of Chinese Academy of Sciences, Beijing 100049, China

5 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

10 Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai 200032, China

Changping Huang

18 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

11 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

37 Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

26 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Xingchen Liu

28 Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

2 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

Fengliang Dong

3 National Center for Nanoscience and Technology, Beijing 100190, China

Cheng-Wei Qiu

4 Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore

6 Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, Shanghai 200011, China

36 Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai 200011, China

7 School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China

41 Second Affiliated Hospital School of Medicine, and School of Public Health, Zhejiang University, Hangzhou 310058, China

8 Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China

9 Zhejiang Provincial People’s Hospital, Hangzhou 310014, China

Chenguang Fu

12 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Zhigang Yin

13 Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

Ronald Roepman

14 Medical Center, Radboud University, 6500 Nijmegen, the Netherlands

Sabine Dietmann

15 Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA

Marko Virta

16 Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland

Fredrick Kengara

17 School of Pure and Applied Sciences, Bomet University College, Bomet 20400, Kenya

19 Agriculture College of Shihezi University, Xinjiang 832000, China

Taolan Zhao

20 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

21 The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

38 Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China

Jialiang Yang

22 Geneis (Beijing) Co., Ltd, Beijing 100102, China

23 Department of Communication Studies, Hong Kong Baptist University, Hong Kong, China

24 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

39 Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China

Zhaofeng Liu

27 Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China

29 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China

Xiaohong Liu

30 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

James P. Lewis

James m. tiedje.

34 Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA

40 Zhejiang Lab, Hangzhou 311121, China

25 Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China

31 Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY23 3FL, UK

Zhipeng Cai

32 Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA

33 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

Jiabao Zhang

Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.

Graphical abstract

An external file that holds a picture, illustration, etc.
Object name is fx1.jpg

Public summary

  • • “Can machines think?” The goal of artificial intelligence (AI) is to enable machines to mimic human thoughts and behaviors, including learning, reasoning, predicting, and so on.
  • • “Can AI do fundamental research?” AI coupled with machine learning techniques is impacting a wide range of fundamental sciences, including mathematics, medical science, physics, etc.
  • • “How does AI accelerate fundamental research?” New research and applications are emerging rapidly with the support by AI infrastructure, including data storage, computing power, AI algorithms, and frameworks.

Introduction

“Can machines think?” Alan Turing posed this question in his famous paper “Computing Machinery and Intelligence.” 1 He believes that to answer this question, we need to define what thinking is. However, it is difficult to define thinking clearly, because thinking is a subjective behavior. Turing then introduced an indirect method to verify whether a machine can think, the Turing test, which examines a machine's ability to show intelligence indistinguishable from that of human beings. A machine that succeeds in the test is qualified to be labeled as artificial intelligence (AI).

AI refers to the simulation of human intelligence by a system or a machine. The goal of AI is to develop a machine that can think like humans and mimic human behaviors, including perceiving, reasoning, learning, planning, predicting, and so on. Intelligence is one of the main characteristics that distinguishes human beings from animals. With the interminable occurrence of industrial revolutions, an increasing number of types of machine types continuously replace human labor from all walks of life, and the imminent replacement of human resources by machine intelligence is the next big challenge to be overcome. Numerous scientists are focusing on the field of AI, and this makes the research in the field of AI rich and diverse. AI research fields include search algorithms, knowledge graphs, natural languages processing, expert systems, evolution algorithms, machine learning (ML), deep learning (DL), and so on.

The general framework of AI is illustrated in Figure 1 . The development process of AI includes perceptual intelligence, cognitive intelligence, and decision-making intelligence. Perceptual intelligence means that a machine has the basic abilities of vision, hearing, touch, etc., which are familiar to humans. Cognitive intelligence is a higher-level ability of induction, reasoning and acquisition of knowledge. It is inspired by cognitive science, brain science, and brain-like intelligence to endow machines with thinking logic and cognitive ability similar to human beings. Once a machine has the abilities of perception and cognition, it is often expected to make optimal decisions as human beings, to improve the lives of people, industrial manufacturing, etc. Decision intelligence requires the use of applied data science, social science, decision theory, and managerial science to expand data science, so as to make optimal decisions. To achieve the goal of perceptual intelligence, cognitive intelligence, and decision-making intelligence, the infrastructure layer of AI, supported by data, storage and computing power, ML algorithms, and AI frameworks is required. Then by training models, it is able to learn the internal laws of data for supporting and realizing AI applications. The application layer of AI is becoming more and more extensive, and deeply integrated with fundamental sciences, industrial manufacturing, human life, social governance, and cyberspace, which has a profound impact on our work and lifestyle.

An external file that holds a picture, illustration, etc.
Object name is gr1.jpg

The general framework of AI

History of AI

The beginning of modern AI research can be traced back to John McCarthy, who coined the term “artificial intelligence (AI),” during at a conference at Dartmouth College in 1956. This symbolized the birth of the AI scientific field. Progress in the following years was astonishing. Many scientists and researchers focused on automated reasoning and applied AI for proving of mathematical theorems and solving of algebraic problems. One of the famous examples is Logic Theorist, a computer program written by Allen Newell, Herbert A. Simon, and Cliff Shaw, which proves 38 of the first 52 theorems in “Principia Mathematica” and provides more elegant proofs for some. 2 These successes made many AI pioneers wildly optimistic, and underpinned the belief that fully intelligent machines would be built in the near future. However, they soon realized that there was still a long way to go before the end goals of human-equivalent intelligence in machines could come true. Many nontrivial problems could not be handled by the logic-based programs. Another challenge was the lack of computational resources to compute more and more complicated problems. As a result, organizations and funders stopped supporting these under-delivering AI projects.

AI came back to popularity in the 1980s, as several research institutions and universities invented a type of AI systems that summarizes a series of basic rules from expert knowledge to help non-experts make specific decisions. These systems are “expert systems.” Examples are the XCON designed by Carnegie Mellon University and the MYCIN designed by Stanford University. The expert system derived logic rules from expert knowledge to solve problems in the real world for the first time. The core of AI research during this period is the knowledge that made machines “smarter.” However, the expert system gradually revealed several disadvantages, such as privacy technologies, lack of flexibility, poor versatility, expensive maintenance cost, and so on. At the same time, the Fifth Generation Computer Project, heavily funded by the Japanese government, failed to meet most of its original goals. Once again, the funding for AI research ceased, and AI was at the second lowest point of its life.

In 2006, Geoffrey Hinton and coworkers 3 , 4 made a breakthrough in AI by proposing an approach of building deeper neural networks, as well as a way to avoid gradient vanishing during training. This reignited AI research, and DL algorithms have become one of the most active fields of AI research. DL is a subset of ML based on multiple layers of neural networks with representation learning, 5 while ML is a part of AI that a computer or a program can use to learn and acquire intelligence without human intervention. Thus, “learn” is the keyword of this era of AI research. Big data technologies, and the improvement of computing power have made deriving features and information from massive data samples more efficient. An increasing number of new neural network structures and training methods have been proposed to improve the representative learning ability of DL, and to further expand it into general applications. Current DL algorithms match and exceed human capabilities on specific datasets in the areas of computer vision (CV) and natural language processing (NLP). AI technologies have achieved remarkable successes in all walks of life, and continued to show their value as backbones in scientific research and real-world applications.

Within AI, ML is having a substantial broad effect across many aspects of technology and science: from computer science to geoscience to materials science, from life science to medical science to chemistry to mathematics and to physics, from management science to economics to psychology, and other data-intensive empirical sciences, as ML methods have been developed to analyze high-throughput data to obtain useful insights, categorize, predict, and make evidence-based decisions in novel ways. To train a system by presenting it with examples of desired input-output behavior, could be far easier than to program it manually by predicting the desired response for all potential inputs. The following sections survey eight fundamental sciences, including information science (informatics), mathematics, medical science, materials science, geoscience, life science, physics, and chemistry, which develop or exploit AI techniques to promote the development of sciences and accelerate their applications to benefit human beings, society, and the world.

AI in information science

AI aims to provide the abilities of perception, cognition, and decision-making for machines. At present, new research and applications in information science are emerging at an unprecedented rate, which is inseparable from the support by the AI infrastructure. As shown in Figure 2 , the AI infrastructure layer includes data, storage and computing power, ML algorithms, and the AI framework. The perception layer enables machines have the basic ability of vision, hearing, etc. For instance, CV enables machines to “see” and identify objects, while speech recognition and synthesis helps machines to “hear” and recognize speech elements. The cognitive layer provides higher ability levels of induction, reasoning, and acquiring knowledge with the help of NLP, 6 knowledge graphs, 7 and continual learning. 8 In the decision-making layer, AI is capable of making optimal decisions, such as automatic planning, expert systems, and decision-supporting systems. Numerous applications of AI have had a profound impact on fundamental sciences, industrial manufacturing, human life, social governance, and cyberspace. The following subsections provide an overview of the AI framework, automatic machine learning (AutoML) technology, and several state-of-the-art AI/ML applications in the information field.

An external file that holds a picture, illustration, etc.
Object name is gr2.jpg

The knowledge graph of the AI framework

The AI framework provides basic tools for AI algorithm implementation

In the past 10 years, applications based on AI algorithms have played a significant role in various fields and subjects, on the basis of which the prosperity of the DL framework and platform has been founded. AI frameworks and platforms reduce the requirement of accessing AI technology by integrating the overall process of algorithm development, which enables researchers from different areas to use it across other fields, allowing them to focus on designing the structure of neural networks, thus providing better solutions to problems in their fields. At the beginning of the 21st century, only a few tools, such as MATLAB, OpenNN, and Torch, were capable of describing and developing neural networks. However, these tools were not originally designed for AI models, and thus faced problems, such as complicated user API and lacking GPU support. During this period, using these frameworks demanded professional computer science knowledge and tedious work on model construction. As a solution, early frameworks of DL, such as Caffe, Chainer, and Theano, emerged, allowing users to conveniently construct complex deep neural networks (DNNs), such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and LSTM conveniently, and this significantly reduced the cost of applying AI models. Tech giants then joined the march in researching AI frameworks. 9 Google developed the famous open-source framework, TensorFlow, while Facebook's AI research team released another popular platform, PyTorch, which is based on Torch; Microsoft Research published CNTK, and Amazon announced MXNet. Among them, TensorFlow, also the most representative framework, referred to Theano's declarative programming style, offering a larger space for graph-based optimization, while PyTorch inherited the imperative programming style of Torch, which is intuitive, user friendly, more flexible, and easier to be traced. As modern AI frameworks and platforms are being widely applied, practitioners can now assemble models swiftly and conveniently by adopting various building block sets and languages specifically suitable for given fields. Polished over time, these platforms gradually developed a clearly defined user API, the ability for multi-GPU training and distributed training, as well as a variety of model zoos and tool kits for specific tasks. 10 Looking forward, there are a few trends that may become the mainstream of next-generation framework development. (1) Capability of super-scale model training. With the emergence of models derived from Transformer, such as BERT and GPT-3, the ability of training large models has become an ideal feature of the DL framework. It requires AI frameworks to train effectively under the scale of hundreds or even thousands of devices. (2) Unified API standard. The APIs of many frameworks are generally similar but slightly different at certain points. This leads to some difficulties and unnecessary learning efforts, when the user attempts to shift from one framework to another. The API of some frameworks, such as JAX, has already become compatible with Numpy standard, which is familiar to most practitioners. Therefore, a unified API standard for AI frameworks may gradually come into being in the future. (3) Universal operator optimization. At present, kernels of DL operator are implemented either manually or based on third-party libraries. Most third-party libraries are developed to suit certain hardware platforms, causing large unnecessary spending when models are trained or deployed on different hardware platforms. The development speed of new DL algorithms is usually much faster than the update rate of libraries, which often makes new algorithms to be beyond the range of libraries' support. 11

To improve the implementation speed of AI algorithms, much research focuses on how to use hardware for acceleration. The DianNao family is one of the earliest research innovations on AI hardware accelerators. 12 It includes DianNao, DaDianNao, ShiDianNao, and PuDianNao, which can be used to accelerate the inference speed of neural networks and other ML algorithms. Of these, the best performance of a 64-chip DaDianNao system can achieve a speed up of 450.65× over a GPU, and reduce the energy by 150.31×. Prof. Chen and his team in the Institute of Computing Technology also designed an Instruction Set Architecture for a broad range of neural network accelerators, called Cambricon, which developed into a serial DL accelerator. After Cambricon, many AI-related companies, such as Apple, Google, HUAWEI, etc., developed their own DL accelerators, and AI accelerators became an important research field of AI.

AI for AI—AutoML

AutoML aims to study how to use evolutionary computing, reinforcement learning (RL), and other AI algorithms, to automatically generate specified AI algorithms. Research on the automatic generation of neural networks has existed before the emergence of DL, e.g., neural evolution. 13 The main purpose of neural evolution is to allow neural networks to evolve according to the principle of survival of the fittest in the biological world. Through selection, crossover, mutation, and other evolutionary operators, the individual quality in a population is continuously improved and, finally, the individual with the greatest fitness represents the best neural network. The biological inspiration in this field lies in the evolutionary process of human brain neurons. The human brain has such developed learning and memory functions that it cannot do without the complex neural network system in the brain. The whole neural network system of the human brain benefits from a long evolutionary process rather than gradient descent and back propagation. In the era of DL, the application of AI algorithms to automatically generate DNN has attracted more attention and, gradually, developed into an important direction of AutoML research: neural architecture search. The implementation methods of neural architecture search are usually divided into the RL-based method and the evolutionary algorithm-based method. In the RL-based method, an RNN is used as a controller to generate a neural network structure layer by layer, and then the network is trained, and the accuracy of the verification set is used as the reward signal of the RNN to calculate the strategy gradient. During the iteration, the controller will give the neural network, with higher accuracy, a higher probability value, so as to ensure that the strategy function can output the optimal network structure. 14 The method of neural architecture search through evolution is similar to the neural evolution method, which is based on a population and iterates continuously according to the principle of survival of the fittest, so as to obtain a high-quality neural network. 15 Through the application of neural architecture search technology, the design of neural networks is more efficient and automated, and the accuracy of the network gradually outperforms that of the networks designed by AI experts. For example, Google's SOTA network EfficientNet was realized through the baseline network based on neural architecture search. 16

AI enabling networking design adaptive to complex network conditions

The application of DL in the networking field has received strong interest. Network design often relies on initial network conditions and/or theoretical assumptions to characterize real network environments. However, traditional network modeling and design, regulated by mathematical models, are unlikely to deal with complex scenarios with many imperfect and high dynamic network environments. Integrating DL into network research allows for a better representation of complex network environments. Furthermore, DL could be combined with the Markov decision process and evolve into the deep reinforcement learning (DRL) model, which finds an optimal policy based on the reward function and the states of the system. Taken together, these techniques could be used to make better decisions to guide proper network design, thereby improving the network quality of service and quality of experience. With regard to the aspect of different layers of the network protocol stack, DL/DRL can be adopted for network feature extraction, decision-making, etc. In the physical layer, DL can be used for interference alignment. It can also be used to classify the modulation modes, design efficient network coding 17 and error correction codes, etc. In the data link layer, DL can be used for resource (such as channels) allocation, medium access control, traffic prediction, 18 link quality evaluation, and so on. In the network (routing) layer, routing establishment and routing optimization 19 can help to obtain an optimal routing path. In higher layers (such as the application layer), enhanced data compression and task allocation is used. Besides the above protocol stack, one critical area of using DL is network security. DL can be used to classify the packets into benign/malicious types, and how it can be integrated with other ML schemes, such as unsupervised clustering, to achieve a better anomaly detection effect.

AI enabling more powerful and intelligent nanophotonics

Nanophotonic components have recently revolutionized the field of optics via metamaterials/metasurfaces by enabling the arbitrary manipulation of light-matter interactions with subwavelength meta-atoms or meta-molecules. 20 , 21 , 22 The conventional design of such components involves generally forward modeling, i.e., solving Maxwell's equations based on empirical and intuitive nanostructures to find corresponding optical properties, as well as the inverse design of nanophotonic devices given an on-demand optical response. The trans-dimensional feature of macro-optical components consisting of complex nano-antennas makes the design process very time consuming, computationally expensive, and even numerically prohibitive, such as device size and complexity increase. DL is an efficient and automatic platform, enabling novel efficient approaches to designing nanophotonic devices with high-performance and versatile functions. Here, we present briefly the recent progress of DL-based nanophotonics and its wide-ranging applications. DL was exploited for forward modeling at first using a DNN. 23 The transmission or reflection coefficients can be well predicted after training on huge datasets. To improve the prediction accuracy of DNN in case of small datasets, transfer learning was introduced to migrate knowledge between different physical scenarios, which greatly reduced the relative error. Furthermore, a CNN and an RNN were developed for the prediction of optical properties from arbitrary structures using images. 24 The CNN-RNN combination successfully predicted the absorption spectra from the given input structural images. In inverse design of nanophotonic devices, there are three different paradigms of DL methods, i.e., supervised, unsupervised, and RL. 25 Supervised learning has been utilized to design structural parameters for the pre-defined geometries, such as tandem DNN and bidirectional DNNs. Unsupervised learning methods learn by themselves without a specific target, and thus are more accessible to discovering new and arbitrary patterns 26 in completely new data than supervised learning. A generative adversarial network (GAN)-based approach, combining conditional GANs and Wasserstein GANs, was proposed to design freeform all-dielectric multifunctional metasurfaces. RL, especially double-deep Q-learning, powers up the inverse design of high-performance nanophotonic devices. 27 DL has endowed nanophotonic devices with better performance and more emerging applications. 28 , 29 For instance, an intelligent microwave cloak driven by DL exhibits millisecond and self-adaptive response to an ever-changing incident wave and background. 28 Another example is that a DL-augmented infrared nanoplasmonic metasurface is developed for monitoring dynamics between four major classes of bio-molecules, which could impact the fields of biology, bioanalytics, and pharmacology from fundamental research, to disease diagnostics, to drug development. 29 The potential of DL in the wide arena of nanophotonics has been unfolding. Even end-users without optics and photonics background could exploit the DL as a black box toolkit to design powerful optical devices. Nevertheless, how to interpret/mediate the intermediate DL process and determine the most dominant factors in the search for optimal solutions, are worthy of being investigated in depth. We optimistically envisage that the advancements in DL algorithms and computation/optimization infrastructures would enable us to realize more efficient and reliable training approaches, more complex nanostructures with unprecedented shapes and sizes, and more intelligent and reconfigurable optic/optoelectronic systems.

AI in other fields of information science

We believe that AI has great potential in the following directions:

  • • AI-based risk control and management in utilities can prevent costly or hazardous equipment failures by using sensors that detect and send information regarding the machine's health to the manufacturer, predicting possible issues that could occur so as to ensure timely maintenance or automated shutdown.
  • • AI could be used to produce simulations of real-world objects, called digital twins. When applied to the field of engineering, digital twins allow engineers and technicians to analyze the performance of an equipment virtually, thus avoiding safety and budget issues associated with traditional testing methods.
  • • Combined with AI, intelligent robots are playing an important role in industry and human life. Different from traditional robots working according to the procedures specified by humans, intelligent robots have the ability of perception, recognition, and even automatic planning and decision-making, based on changes in environmental conditions.
  • • AI of things (AIoT) or AI-empowered IoT applications. 30 have become a promising development trend. AI can empower the connected IoT devices, embedded in various physical infrastructures, to perceive, recognize, learn, and act. For instance, smart cities constantly collect data regarding quality-of-life factors, such as the status of power supply, public transportation, air pollution, and water use, to manage and optimize systems in cities. Due to these data, especially personal data being collected from informed or uninformed participants, data security, and privacy 31 require protection.

AI in mathematics

Mathematics always plays a crucial and indispensable role in AI. Decades ago, quite a few classical AI-related approaches, such as k-nearest neighbor, 32 support vector machine, 33 and AdaBoost, 34 were proposed and developed after their rigorous mathematical formulations had been established. In recent years, with the rapid development of DL, 35 AI has been gaining more and more attention in the mathematical community. Equipped with the Markov process, minimax optimization, and Bayesian statistics, RL, 36 GANs, 37 and Bayesian learning 38 became the most favorable tools in many AI applications. Nevertheless, there still exist plenty of open problems in mathematics for ML, including the interpretability of neural networks, the optimization problems of parameter estimation, and the generalization ability of learning models. In the rest of this section, we discuss these three questions in turn.

The interpretability of neural networks

From a mathematical perspective, ML usually constructs nonlinear models, with neural networks as a typical case, to approximate certain functions. The well-known Universal Approximation Theorem suggests that, under very mild conditions, any continuous function can be uniformly approximated on compact domains by neural networks, 39 which serves a vital function in the interpretability of neural networks. However, in real applications, ML models seem to admit accurate approximations of many extremely complicated functions, sometimes even black boxes, which are far beyond the scope of continuous functions. To understand the effectiveness of ML models, many researchers have investigated the function spaces that can be well approximated by them, and the corresponding quantitative measures. This issue is closely related to the classical approximation theory, but the approximation scheme is distinct. For example, Bach 40 finds that the random feature model is naturally associated with the corresponding reproducing kernel Hilbert space. In the same way, the Barron space is identified as the natural function space associated with two-layer neural networks, and the approximation error is measured using the Barron norm. 41 The corresponding quantities of residual networks (ResNets) are defined for the flow-induced spaces. For multi-layer networks, the natural function spaces for the purposes of approximation theory are the tree-like function spaces introduced in Wojtowytsch. 42 There are several works revealing the relationship between neural networks and numerical algorithms for solving partial differential equations. For example, He and Xu 43 discovered that CNNs for image classification have a strong connection with multi-grid (MG) methods. In fact, the pooling operation and feature extraction in CNNs correspond directly to restriction operation and iterative smoothers in MG, respectively. Hence, various convolution and pooling operations used in CNNs can be better understood.

The optimization problems of parameter estimation

In general, the optimization problem of estimating parameters of certain DNNs is in practice highly nonconvex and often nonsmooth. Can the global minimizers be expected? What is the landscape of local minimizers? How does one handle the nonsmoothness? All these questions are nontrivial from an optimization perspective. Indeed, numerous works and experiments demonstrate that the optimization for parameter estimation in DL is itself a much nicer problem than once thought; see, e.g., Goodfellow et al. 44 As a consequence, the study on the solution landscape ( Figure 3 ), also known as loss surface of neural networks, is no longer supposed to be inaccessible and can even in turn provide guidance for global optimization. Interested readers can refer to the survey paper (Sun et al. 45 ) for recent progress in this aspect.

An external file that holds a picture, illustration, etc.
Object name is gr3.jpg

Recent studies indicate that nonsmooth activation functions, e.g., rectified linear units, are better than smooth ones in finding sparse solutions. However, the chain rule does not work in the case that the activation functions are nonsmooth, which then makes the widely used stochastic gradient (SG)-based approaches not feasible in theory. Taking approximated gradients at nonsmooth iterates as a remedy ensures that SG-type methods are still in extensive use, but that the numerical evidence has also exposed their limitations. Also, the penalty-based approaches proposed by Cui et al. 46 and Liu et al. 47 provide a new direction to solve the nonsmooth optimization problems efficiently.

The generalization ability of learning models

A small training error does not always lead to a small test error. This gap is caused by the generalization ability of learning models. A key finding in statistical learning theory states that the generalization error is bounded by a quantity that grows with the increase of the model capacity, but shrinks as the number of training examples increases. 48 A common conjecture relating generalization to solution landscape is that flat and wide minima generalize better than sharp ones. Thus, regularization techniques, including the dropout approach, 49 have emerged to force the algorithms to bypass the sharp minima. However, the mechanism behind this has not been fully explored. Recently, some researchers have focused on the ResNet-type architecture, with dropout being inserted after the last convolutional layer of each modular building. They thus managed to explain the stochastic dropout training process and the ensuing dropout regularization effect from the perspective of optimal control. 50

AI in medical science

There is a great trend for AI technology to grow more and more significant in daily operations, including medical fields. With the growing needs of healthcare for patients, hospital needs are evolving from informationization networking to the Internet Hospital and eventually to the Smart Hospital. At the same time, AI tools and hardware performance are also growing rapidly with each passing day. Eventually, common AI algorithms, such as CV, NLP, and data mining, will begin to be embedded in the medical equipment market ( Figure 4 ).

An external file that holds a picture, illustration, etc.
Object name is gr4.jpg

AI doctor based on electronic medical records

For medical history data, it is inevitable to mention Doctor Watson, developed by the Watson platform of IBM, and Modernizing Medicine, which aims to solve oncology, and is now adopted by CVS & Walgreens in the US and various medical organizations in China as well. Doctor Watson takes advantage of the NLP performance of the IBM Watson platform, which already collected vast data of medical history, as well as prior knowledge in the literature for reference. After inputting the patients' case, Doctor Watson searches the medical history reserve and forms an elementary treatment proposal, which will be further ranked by prior knowledge reserves. With the multiple models stored, Doctor Watson gives the final proposal as well as the confidence of the proposal. However, there are still problems for such AI doctors because, 51 as they rely on prior experience from US hospitals, the proposal may not be suitable for other regions with different medical insurance policies. Besides, the knowledge updating of the Watson platform also relies highly on the updating of the knowledge reserve, which still needs manual work.

AI for public health: Outbreak detection and health QR code for COVID-19

AI can be used for public health purposes in many ways. One classical usage is to detect disease outbreaks using search engine query data or social media data, as Google did for prediction of influenza epidemics 52 and the Chinese Academy of Sciences did for modeling the COVID-19 outbreak through multi-source information fusion. 53 After the COVID-19 outbreak, a digital health Quick Response (QR) code system has been developed by China, first to detect potential contact with confirmed COVID-19 cases and, secondly, to indicate the person's health status using mobile big data. 54 Different colors indicate different health status: green means healthy and is OK for daily life, orange means risky and requires quarantine, and red means confirmed COVID-19 patient. It is easy to use for the general public, and has been adopted by many other countries. The health QR code has made great contributions to the worldwide prevention and control of the COVID-19 pandemic.

Biomarker discovery with AI

High-dimensional data, including multi-omics data, patient characteristics, medical laboratory test data, etc., are often used for generating various predictive or prognostic models through DL or statistical modeling methods. For instance, the COVID-19 severity evaluation model was built through ML using proteomic and metabolomic profiling data of sera 55 ; using integrated genetic, clinical, and demographic data, Taliaz et al. built an ML model to predict patient response to antidepressant medications 56 ; prognostic models for multiple cancer types (such as liver cancer, lung cancer, breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, prostate cancer, ovarian cancer, lymphoma, leukemia, sarcoma, melanoma, bladder cancer, renal cancer, thyroid cancer, head and neck cancer, etc.) were constructed through DL or statistical methods, such as least absolute shrinkage and selection operator (LASSO), combined with Cox proportional hazards regression model using genomic data. 57

Image-based medical AI

Medical image AI is one of the most developed mature areas as there are numerous models for classification, detection, and segmentation tasks in CV. For the clinical area, CV algorithms can also be used for computer-aided diagnosis and treatment with ECG, CT, eye fundus imaging, etc. As human doctors may be tired and prone to make mistakes after viewing hundreds and hundreds of images for diagnosis, AI doctors can outperform a human medical image viewer due to their specialty at repeated work without fatigue. The first medical AI product approved by FDA is IDx-DR, which uses an AI model to make predictions of diabetic retinopathy. The smartphone app SkinVision can accurately detect melanomas. 58 It uses “fractal analysis” to identify moles and their surrounding skin, based on size, diameter, and many other parameters, and to detect abnormal growth trends. AI-ECG of LEPU Medical can automatically detect heart disease with ECG images. Lianying Medical takes advantage of their hardware equipment to produce real-time high-definition image-guided all-round radiotherapy technology, which successfully achieves precise treatment.

Wearable devices for surveillance and early warning

For wearable devices, AliveCor has developed an algorithm to automatically predict the presence of atrial fibrillation, which is an early warning sign of stroke and heart failure. The 23andMe company can also test saliva samples at a small cost, and a customer can be provided with information based on their genes, including who their ancestors were or potential diseases they may be prone to later in life. It provides accurate health management solutions based on individual and family genetic data. In the 20–30 years of the near feature, we believe there are several directions for further research: (1) causal inference for real-time in-hospital risk prediction. Clinical doctors usually acquire reasonable explanations for certain medical decisions, but the current AI models nowadays are usually black box models. The casual inference will help doctors to explain certain AI decisions and even discover novel ground truths. (2) Devices, including wearable instruments for multi-dimensional health monitoring. The multi-modality model is now a trend for AI research. With various devices to collect multi-modality data and a central processor to fuse all these data, the model can monitor the user's overall real-time health condition and give precautions more precisely. (3) Automatic discovery of clinical markers for diseases that are difficult to diagnose. Diseases, such as ALS, are still difficult for clinical doctors to diagnose because they lack any effective general marker. It may be possible for AI to discover common phenomena for these patients and find an effective marker for early diagnosis.

AI-aided drug discovery

Today we have come into the precision medicine era, and the new targeted drugs are the cornerstones for precision therapy. However, over the past decades, it takes an average of over one billion dollars and 10 years to bring a new drug into the market. How to accelerate the drug discovery process, and avoid late-stage failure, are key concerns for all the big and fiercely competitive pharmaceutical companies. The highlighted emerging role of AI, including ML, DL, expert systems, and artificial neural networks (ANNs), has brought new insights and high efficiency into the new drug discovery processes. AI has been adopted in many aspects of drug discovery, including de novo molecule design, structure-based modeling for proteins and ligands, quantitative structure-activity relationship research, and druggable property judgments. DL-based AI appliances demonstrate superior merits in addressing some challenging problems in drug discovery. Of course, prediction of chemical synthesis routes and chemical process optimization are also valuable in accelerating new drug discovery, as well as lowering production costs.

There has been notable progress in the AI-aided new drug discovery in recent years, for both new chemical entity discovery and the relating business area. Based on DNNs, DeepMind built the AlphaFold platform to predict 3D protein structures that outperformed other algorithms. As an illustration of great achievement, AlphaFold successfully and accurately predicted 25 scratch protein structures from a 43 protein panel without using previously built proteins models. Accordingly, AlphaFold won the CASP13 protein-folding competition in December 2018. 59 Based on the GANs and other ML methods, Insilico constructed a modular drug design platform GENTRL system. In September 2019, they reported the discovery of the first de novo active DDR1 kinase inhibitor developed by the GENTRL system. It took the team only 46 days from target selection to get an active drug candidate using in vivo data. 60 Exscientia and Sumitomo Dainippon Pharma developed a new drug candidate, DSP-1181, for the treatment of obsessive-compulsive disorder on the Centaur Chemist AI platform. In January 2020, DSP-1181 started its phase I clinical trials, which means that, from program initiation to phase I study, the comprehensive exploration took less than 12 months. In contrast, comparable drug discovery using traditional methods usually needs 4–5 years with traditional methods.

How AI transforms medical practice: A case study of cervical cancer

As the most common malignant tumor in women, cervical cancer is a disease that has a clear cause and can be prevented, and even treated, if detected early. Conventionally, the screening strategy for cervical cancer mainly adopts the “three-step” model of “cervical cytology-colposcopy-histopathology.” 61 However, limited by the level of testing methods, the efficiency of cervical cancer screening is not high. In addition, owing to the lack of knowledge by doctors in some primary hospitals, patients cannot be provided with the best diagnosis and treatment decisions. In recent years, with the advent of the era of computer science and big data, AI has gradually begun to extend and blend into various fields. In particular, AI has been widely used in a variety of cancers as a new tool for data mining. For cervical cancer, a clinical database with millions of medical records and pathological data has been built, and an AI medical tool set has been developed. 62 Such an AI analysis algorithm supports doctors to access the ability of rapid iterative AI model training. In addition, a prognostic prediction model established by ML and a web-based prognostic result calculator have been developed, which can accurately predict the risk of postoperative recurrence and death in cervical cancer patients, and thereby better guide decision-making in postoperative adjuvant treatment. 63

AI in materials science

As the cornerstone of modern industry, materials have played a crucial role in the design of revolutionary forms of matter, with targeted properties for broad applications in energy, information, biomedicine, construction, transportation, national security, spaceflight, and so forth. Traditional strategies rely on the empirical trial and error experimental approaches as well as the theoretical simulation methods, e.g., density functional theory, thermodynamics, or molecular dynamics, to discover novel materials. 64 These methods often face the challenges of long research cycles, high costs, and low success rates, and thus cannot meet the increasingly growing demands of current materials science. Accelerating the speed of discovery and deployment of advanced materials will therefore be essential in the coming era.

With the rapid development of data processing and powerful algorithms, AI-based methods, such as ML and DL, are emerging with good potentials in the search for and design of new materials prior to actually manufacturing them. 65 , 66 By integrating material property data, such as the constituent element, lattice symmetry, atomic radius, valence, binding energy, electronegativity, magnetism, polarization, energy band, structure-property relation, and functionalities, the machine can be trained to “think” about how to improve material design and even predict the properties of new materials in a cost-effective manner ( Figure 5 ).

An external file that holds a picture, illustration, etc.
Object name is gr5.jpg

AI is expected to power the development of materials science

AI in discovery and design of new materials

Recently, AI techniques have made significant advances in rational design and accelerated discovery of various materials, such as piezoelectric materials with large electrostrains, 67 organic-inorganic perovskites for photovoltaics, 68 molecular emitters for efficient light-emitting diodes, 69 inorganic solid materials for thermoelectrics, 70 and organic electronic materials for renewable-energy applications. 66 , 71 The power of data-driven computing and algorithmic optimization can promote comprehensive applications of simulation and ML (i.e., high-throughput virtual screening, inverse molecular design, Bayesian optimization, and supervised learning, etc.), in material discovery and property prediction in various fields. 72 For instance, using a DL Bayesian framework, the attribute-driven inverse materials design has been demonstrated for efficient and accurate prediction of functional molecular materials, with desired semiconducting properties or redox stability for applications in organic thin-film transistors, organic solar cells, or lithium-ion batteries. 73 It is meaningful to adopt automation tools for quick experimental testing of potential materials and utilize high-performance computing to calculate their bulk, interface, and defect-related properties. 74 The effective convergence of automation, computing, and ML can greatly speed up the discovery of materials. In the future, with the aid of AI techniques, it will be possible to accomplish the design of superconductors, metallic glasses, solder alloys, high-entropy alloys, high-temperature superalloys, thermoelectric materials, two-dimensional materials, magnetocaloric materials, polymeric bio-inspired materials, sensitive composite materials, and topological (electronic and phonon) materials, and so on. In the past decade, topological materials have ignited the research enthusiasm of condensed matter physicists, materials scientists, and chemists, as they exhibit exotic physical properties with potential applications in electronics, thermoelectrics, optics, catalysis, and energy-related fields. From the most recent predictions, more than a quarter of all inorganic materials in nature are topologically nontrivial. The establishment of topological electronic materials databases 75 , 76 , 77 and topological phononic materials databases 78 using high-throughput methods will help to accelerate the screening and experimental discovery of new topological materials for functional applications. It is recognized that large-scale high-quality datasets are required to practice AI. Great efforts have also been expended in building high-quality materials science databases. As one of the top-ranking databases of its kind, the “atomly.net” materials data infrastructure, 79 has calculated the properties of more than 180,000 inorganic compounds, including their equilibrium structures, electron energy bands, dielectric properties, simulated diffraction patterns, elasticity tensors, etc. As such, the atomly.net database has set a solid foundation for extending AI into the area of materials science research. The X-ray diffraction (XRD)-matcher model of atomly.net uses ML to match and classify the experimental XRD to the simulated patterns. Very recently, by using the dataset from atomly.net, an accurate AI model was built to rapidly predict the formation energy of almost any given compound to yield a fairly good predictive ability. 80

AI-powered Materials Genome Initiative

The Materials Genome Initiative (MGI) is a great plan for rational realization of new materials and related functions, and it aims to discover, manufacture, and deploy advanced materials efficiently, cost-effectively, and intelligently. The initiative creates policy, resources, and infrastructure for accelerating materials development at a high level. This is a new paradigm for the discovery and design of next-generation materials, and runs from a view point of fundamental building blocks toward general materials developments, and accelerates materials development through efforts in theory, computation, and experiment, in a highly integrated high-throughput manner. MGI raises an ultimately high goal and high level for materials development and materials science for humans in the future. The spirit of MGI is to design novel materials by using data pools and powerful computation once the requirements or aspirations of functional usages appear. The theory, computation, and algorithm are the primary and substantial factors in the establishment and implementation of MGI. Advances in theories, computations, and experiments in materials science and engineering provide the footstone to not only accelerate the speed at which new materials are realized but to also shorten the time needed to push new products into the market. These AI techniques bring a great promise to the developing MGI. The applications of new technologies, such as ML and DL, directly accelerate materials research and the establishment of MGI. The model construction and application to science and engineering, as well as the data infrastructure, are of central importance. When the AI-powered MGI approaches are coupled with the ongoing autonomy of manufacturing methods, the potential impact to society and the economy in the future is profound. We are now beginning to see that the AI-aided MGI, among other things, integrates experiments, computation, and theory, and facilitates access to materials data, equips the next generation of the materials workforce, and enables a paradigm shift in materials development. Furthermore, the AI-powdered MGI could also design operational procedures and control the equipment to execute experiments, and to further realize autonomous experimentation in future material research.

Advanced functional materials for generation upgrade of AI

The realization and application of AI techniques depend on the computational capability and computer hardware, and this bases physical functionality on the performance of computers or supercomputers. For our current technology, the electric currents or electric carriers for driving electric chips and devices consist of electrons with ordinary characteristics, such as heavy mass and low mobility. All chips and devices emit relatively remarkable heat levels, consuming too much energy and lowering the efficiency of information transmission. Benefiting from the rapid development of modern physics, a series of advanced materials with exotic functional effects have been discovered or designed, including superconductors, quantum anomalous Hall insulators, and topological fermions. In particular, the superconducting state or topologically nontrivial electrons will promote the next-generation AI techniques once the (near) room temperature applications of these states are realized and implanted in integrated circuits. 81 In this case, the central processing units, signal circuits, and power channels will be driven based on the electronic carriers that show massless, energy-diffusionless, ultra-high mobility, or chiral-protection characteristics. The ordinary electrons will be removed from the physical circuits of future-generation chips and devices, leaving superconducting and topological chiral electrons running in future AI chips and supercomputers. The efficiency of transmission, for information and logic computing will be improved on a vast scale and at a very low cost.

AI for materials and materials for AI

The coming decade will continue to witness the development of advanced ML algorithms, newly emerging data-driven AI methodologies, and integrated technologies for facilitating structure design and property prediction, as well as to accelerate the discovery, design, development, and deployment of advanced materials into existing and emerging industrial sectors. At this moment, we are facing challenges in achieving accelerated materials research through the integration of experiment, computation, and theory. The great MGI, proposed for high-level materials research, helps to promote this process, especially when it is assisted by AI techniques. Still, there is a long way to go for the usage of these advanced functional materials in future-generation electric chips and devices to be realized. More materials and functional effects need to be discovered or improved by the developing AI techniques. Meanwhile, it is worth noting that materials are the core components of devices and chips that are used for construction of computers or machines for advanced AI systems. The rapid development of new materials, especially the emergence of flexible, sensitive, and smart materials, is of great importance for a broad range of attractive technologies, such as flexible circuits, stretchable tactile sensors, multifunctional actuators, transistor-based artificial synapses, integrated networks of semiconductor/quantum devices, intelligent robotics, human-machine interactions, simulated muscles, biomimetic prostheses, etc. These promising materials, devices, and integrated technologies will greatly promote the advancement of AI systems toward wide applications in human life. Once the physical circuits are upgraded by advanced functional or smart materials, AI techniques will largely promote the developments and applications of all disciplines.

AI in geoscience

Ai technologies involved in a large range of geoscience fields.

Momentous challenges threatening current society require solutions to problems that belong to geoscience, such as evaluating the effects of climate change, assessing air quality, forecasting the effects of disaster incidences on infrastructure, by calculating the incoming consumption and availability of food, water, and soil resources, and identifying factors that are indicators for potential volcanic eruptions, tsunamis, floods, and earthquakes. 82 , 83 It has become possible, with the emergence of advanced technology products (e.g., deep sea drilling vessels and remote sensing satellites), for enhancements in computational infrastructure that allow for processing large-scale, wide-range simulations of multiple models in geoscience, and internet-based data analysis that facilitates collection, processing, and storage of data in distributed and crowd-sourced environments. 84 The growing availability of massive geoscience data provides unlimited possibilities for AI—which has popularized all aspects of our daily life (e.g., entertainment, transportation, and commerce)—to significantly contribute to geoscience problems of great societal relevance. As geoscience enters the era of massive data, AI, which has been extensively successful in different fields, offers immense opportunities for settling a series of problems in Earth systems. 85 , 86 Accompanied by diversified data, AI-enabled technologies, such as smart sensors, image visualization, and intelligent inversion, are being actively examined in a large range of geoscience fields, such as marine geoscience, rock physics, geology, ecology, seismicity, environment, hydrology, remote sensing, Arc GIS, and planetary science. 87

Multiple challenges in the development of geoscience

There are some traits of geoscience development that restrict the applicability of fundamental algorithms for knowledge discovery: (1) inherent challenges of geoscience processes, (2) limitation of geoscience data collection, and (3) uncertainty in samples and ground truth. 88 , 89 , 90 Amorphous boundaries generally exist in geoscience objects between space and time that are not as well defined as objects in other fields. Geoscience phenomena are also significantly multivariate, obey nonlinear relationships, and exhibit spatiotemporal structure and non-stationary characteristics. Except for the inherent challenges of geoscience observations, the massive data at multiple dimensions of time and space, with different levels of incompleteness, noise, and uncertainties, disturb processes in geoscience. For supervised learning approaches, there are other difficulties owing to the lack of gold standard ground truth and the “small size” of samples (e.g., a small amount of historical data with sufficient observations) in geoscience applications.

Usage of AI technologies as efficient approaches to promote the geoscience processes

Geoscientists continually make every effort to develop better techniques for simulating the present status of the Earth system (e.g., how much greenhouse gases are released into the atmosphere), and the connections between and within its subsystems (e.g., how does the elevated temperature influence the ocean ecosystem). Viewed from the perspective of geoscience, newly emerging approaches, with the aid of AI, are a perfect combination for these issues in the application of geoscience: (1) characterizing objects and events 91 ; (2) estimating geoscience variables from observations 92 ; (3) forecasting geoscience variables according to long-term observations 85 ; (4) exploring geoscience data relationships 93 ; and (5) causal discovery and causal attribution. 94 While characterizing geoscience objects and events using traditional methods are primarily rooted in hand-coded features, algorithms can automatically detect the data by improving the performance with pattern-mining techniques. However, due to spatiotemporal targets with vague boundaries and the related uncertainties, it can be necessary to advance pattern-mining methods that can explain the temporal and spatial characteristics of geoscience data when characterizing different events and objects. To address the non-stationary issue of geoscience data, AI-aided algorithms have been expanded to integrate the holistic results of professional predictors and engender robust estimations of climate variables (e.g., humidity and temperature). Furthermore, forecasting long-term trends of the current situation in the Earth system using AI-enabled technologies can simulate future scenarios and formulate early resource planning and adaptation policies. Mining geoscience data relationships can help us seize vital signs of the Earth system and promote our understanding of geoscience developments. Of great interest is the advancement of AI-decision methodology with uncertain prediction probabilities, engendering vague risks with poorly resolved tails, signifying the most extreme, transient, and rare events formulated by model sets, which supports various cases to improve accuracy and effectiveness.

AI technologies for optimizing the resource management in geoscience

Currently, AI can perform better than humans in some well-defined tasks. For example, AI techniques have been used in urban water resource planning, mainly due to their remarkable capacity for modeling, flexibility, reasoning, and forecasting the water demand and capacity. Design and application of an Adaptive Intelligent Dynamic Water Resource Planning system, the subset of AI for sustainable water resource management in urban regions, largely prompted the optimization of water resource allocation, will finally minimize the operation costs and improve the sustainability of environmental management 95 ( Figure 6 ). Also, meteorology requires collecting tremendous amounts of data on many different variables, such as humidity, altitude, and temperature; however, dealing with such a huge dataset is a big challenge. 96 An AI-based technique is being utilized to analyze shallow-water reef images, recognize the coral color—to track the effects of climate change, and to collect humidity, temperature, and CO 2 data—to grasp the health of our ecological environment. 97 Beyond AI's capabilities for meteorology, it can also play a critical role in decreasing greenhouse gas emissions originating from the electric-power sector. Comprised of production, transportation, allocation, and consumption of electricity, many opportunities exist in the electric-power sector for Al applications, including speeding up the development of new clean energy, enhancing system optimization and management, improving electricity-demand forecasts and distribution, and advancing system monitoring. 98 New materials may even be found, with the auxiliary of AI, for batteries to store energy or materials and absorb CO 2 from the atmosphere. 99 Although traditional fossil fuel operations have been widely used for thousands of years, AI techniques are being used to help explore the development of more potential sustainable energy sources for the development (e.g., fusion technology). 100

An external file that holds a picture, illustration, etc.
Object name is gr6.jpg

Applications of AI in hydraulic resource management

In addition to the adjustment of energy structures due to climate change (a core part of geoscience systems), a second, less-obvious step could also be taken to reduce greenhouse gas emission: using AI to target inefficiencies. A related statistical report by the Lawrence Livermore National Laboratory pointed out that around 68% of energy produced in the US could be better used for purposeful activities, such as electricity generation or transportation, but is instead contributing to environmental burdens. 101 AI is primed to reduce these inefficiencies of current nuclear power plants and fossil fuel operations, as well as improve the efficiency of renewable grid resources. 102 For example, AI can be instrumental in the operation and optimization of solar and wind farms to make these utility-scale renewable-energy systems far more efficient in the production of electricity. 103 AI can also assist in reducing energy losses in electricity transportation and allocation. 104 A distribution system operator in Europe used AI to analyze load, voltage, and network distribution data, to help “operators assess available capacity on the system and plan for future needs.” 105 AI allowed the distribution system operator to employ existing and new resources to make the distribution of energy assets more readily available and flexible. The International Energy Agency has proposed that energy efficiency is core to the reform of energy systems and will play a key role in reducing the growth of global energy demand to one-third of the current level by 2040.

AI as a building block to promote development in geoscience

The Earth’s system is of significant scientific interest, and affects all aspects of life. 106 The challenges, problems, and promising directions provided by AI are definitely not exhaustive, but rather, serve to illustrate that there is great potential for future AI research in this important field. Prosperity, development, and popularization of AI approaches in the geosciences is commonly driven by a posed scientific question, and the best way to succeed is that AI researchers work closely with geoscientists at all stages of research. That is because the geoscientists can better understand which scientific question is important and novel, which sample collection process can reasonably exhibit the inherent strengths, which datasets and parameters can be used to answer that question, and which pre-processing operations are conducted, such as removing seasonal cycles or smoothing. Similarly, AI researchers are better suited to decide which data analysis approaches are appropriate and available for the data, the advantages and disadvantages of these approaches, and what the approaches actually acquire. Interpretability is also an important goal in geoscience because, if we can understand the basic reasoning behind the models, patterns, or relationships extracted from the data, they can be used as building blocks in scientific knowledge discovery. Hence, frequent communication between the researchers avoids long detours and ensures that analysis results are indeed beneficial to both geoscientists and AI researchers.

AI in the life sciences

The developments of AI and the life sciences are intertwined. The ultimate goal of AI is to achieve human-like intelligence, as the human brain is capable of multi-tasking, learning with minimal supervision, and generalizing learned skills, all accomplished with high efficiency and low energy cost. 107

Mutual inspiration between AI and neuroscience

In the past decades, neuroscience concepts have been introduced into ML algorithms and played critical roles in triggering several important advances in AI. For example, the origins of DL methods lie directly in neuroscience, 5 which further stimulated the emergence of the field of RL. 108 The current state-of-the-art CNNs incorporate several hallmarks of neural computation, including nonlinear transduction, divisive normalization, and maximum-based pooling of inputs, 109 which were directly inspired by the unique processing of visual input in the mammalian visual cortex. 110 By introducing the brain's attentional mechanisms, a novel network has been shown to produce enhanced accuracy and computational efficiency at difficult multi-object recognition tasks than conventional CNNs. 111 Other neuroscience findings, including the mechanisms underlying working memory, episodic memory, and neural plasticity, have inspired the development of AI algorithms that address several challenges in deep networks. 108 These algorithms can be directly implemented in the design and refinement of the brain-machine interface and neuroprostheses.

On the other hand, insights from AI research have the potential to offer new perspectives on the basics of intelligence in the brains of humans and other species. Unlike traditional neuroscientists, AI researchers can formalize the concepts of neural mechanisms in a quantitative language to extract their necessity and sufficiency for intelligent behavior. An important illustration of such exchange is the development of the temporal-difference (TD) methods in RL models and the resemblance of TD-form learning in the brain. 112 Therefore, the China Brain Project covers both basic research on cognition and translational research for brain disease and brain-inspired intelligence technology. 113

AI for omics big data analysis

Currently, AI can perform better than humans in some well-defined tasks, such as omics data analysis and smart agriculture. In the big data era, 114 there are many types of data (variety), the volume of data is big, and the generation of data (velocity) is fast. The high variety, big volume, and fast velocity of data makes having it a matter of big value, but also makes it difficult to analyze the data. Unlike traditional statistics-based methods, AI can easily handle big data and reveal hidden associations.

In genetics studies, there are many successful applications of AI. 115 One of the key questions is to determine whether a single amino acid polymorphism is deleterious. 116 There have been sequence conservation-based SIFT 117 and network-based SySAP, 118 but all these methods have met bottlenecks and cannot be further improved. Sundaram et al. developed PrimateAI, which can predict the clinical outcome of mutation based on DNN. 119 Another problem is how to call copy-number variations, which play important roles in various cancers. 120 , 121 Glessner et al. proposed a DL-based tool DeepCNV, in which the area under the receiver operating characteristic (ROC) curve was 0.909, much higher than other ML methods. 122 In epigenetic studies, m6A modification is one of the most important mechanisms. 123 Zhang et al. developed an ensemble DL predictor (EDLm6APred) for mRNA m6A site prediction. 124 The area under the ROC curve of EDLm6APred was 86.6%, higher than existing m6A methylation site prediction models. There are many other DL-based omics tools, such as DeepCpG 125 for methylation, DeepPep 126 for proteomics, AtacWorks 127 for assay for transposase-accessible chromatin with high-throughput sequencing, and deepTCR 128 for T cell receptor sequencing.

Another emerging application is DL for single-cell sequencing data. Unlike bulk data, in which the sample size is usually much smaller than the number of features, the sample size of cells in single-cell data could also be big compared with the number of genes. That makes the DL algorithm applicable for most single-cell data. Since the single-cell data are sparse and have many unmeasured missing values, DeepImpute can accurately impute these missing values in the big gene × cell matrix. 129 During the quality control of single-cell data, it is important to remove the doublet solo embedded cells, using autoencoder, and then build a feedforward neural network to identify the doublet. 130 Potential energy underlying single-cell gradients used generative modeling to learn the underlying differentiation landscape from time series single-cell RNA sequencing data. 131

In protein structure prediction, the DL-based AIphaFold2 can accurately predict the 3D structures of 98.5% of human proteins, and will predict the structures of 130 million proteins of other organisms in the next few months. 132 It is even considered to be the second-largest breakthrough in life sciences after the human genome project 133 and will facilitate drug development among other things.

AI makes modern agriculture smart

Agriculture is entering a fourth revolution, termed agriculture 4.0 or smart agriculture, benefiting from the arrival of the big data era as well as the rapid progress of lots of advanced technologies, in particular ML, modern information, and communication technologies. 134 , 135 Applications of DL, information, and sensing technologies in agriculture cover the whole stages of agricultural production, including breeding, cultivation, and harvesting.

Traditional breeding usually exploits genetic variations by searching natural variation or artificial mutagenesis. However, it is hard for either method to expose the whole mutation spectrum. Using DL models trained on the existing variants, predictions can be made on multiple unidentified gene loci. 136 For example, an ML method, multi-criteria rice reproductive gene predictor, was developed and applied to predict coding and lincRNA genes associated with reproductive processes in rice. 137 Moreover, models trained in species with well-studied genomic data (such as Arabidopsis and rice) can also be applied to other species with limited genome information (such as wild strawberry and soybean). 138 In most cases, the links between genotypes and phenotypes are more complicated than we expected. One gene can usually respond to multiple phenotypes, and one trait is generally the product of the synergism between multi-genes and multi-development. For this reason, multi-traits DL models were developed and enabled genomic editing in plant breeding. 139 , 140

It is well known that dynamic and accurate monitoring of crops during the whole growth period is vitally important to precision agriculture. In the new stage of agriculture, both remote sensing and DL play indispensable roles. Specifically, remote sensing (including proximal sensing) could produce agricultural big data from ground, air-borne, to space-borne platforms, which have a unique potential to offer an economical approach for non-destructive, timely, objective, synoptic, long-term, and multi-scale information for crop monitoring and management, thereby greatly assisting in precision decisions regarding irrigation, nutrients, disease, pests, and yield. 141 , 142 DL makes it possible to simply, efficiently, and accurately discover knowledge from massive and complicated data, especially for remote sensing big data that are characterized with multiple spatial-temporal-spectral information, owing to its strong capability for feature representation and superiority in capturing the essential relation between observation data and agronomy parameters or crop traits. 135 , 143 Integration of DL and big data for agriculture has demonstrated the most disruptive force, as big as the green revolution. As shown in Figure 7 , for possible application a scenario of smart agriculture, multi-source satellite remote sensing data with various geo- and radio-metric information, as well as abundance of spectral information from UV, visible, and shortwave infrared to microwave regions, can be collected. In addition, advanced aircraft systems, such as unmanned aerial vehicles with multi/hyper-spectral cameras on board, and smartphone-based portable devices, will be used to obtain multi/hyper-spectral data in specific fields. All types of data can be integrated by DL-based fusion techniques for different purposes, and then shared for all users for cloud computing. On the cloud computing platform, different agriculture remote sensing models developed by a combination of data-driven ML methods and physical models, will be deployed and applied to acquire a range of biophysical and biochemical parameters of crops, which will be further analyzed by a decision-making and prediction system to obtain the current water/nutrient stress, growth status, and to predict future development. As a result, an automatic or interactive user service platform can be accessible to make the correct decisions for appropriate actions through an integrated irrigation and fertilization system.

An external file that holds a picture, illustration, etc.
Object name is gr7.jpg

Integration of AI and remote sensing in smart agriculture

Furthermore, DL presents unique advantages in specific agricultural applications, such as for dense scenes, that increase the difficulty of artificial planting and harvesting. It is reported that CNNs and Autoencoder models, trained with image data, are being used increasingly for phenotyping and yield estimation, 144 such as counting fruits in orchards, grain recognition and classification, disease diagnosis, etc. 145 , 146 , 147 Consequently, this may greatly liberate the labor force.

The application of DL in agriculture is just beginning. There are still many problems and challenges for the future development of DL technology. We believe, with the continuous acquisition of massive data and the optimization of algorithms, DL will have a better prospect in agricultural production.

AI in physics

The scale of modern physics ranges from the size of a neutron to the size of the Universe ( Figure 8 ). According to the scale, physics can be divided into four categories: particle physics on the scale of neutrons, nuclear physics on the scale of atoms, condensed matter physics on the scale of molecules, and cosmic physics on the scale of the Universe. AI, also called ML, plays an important role in all physics in different scales, since the use of the AI algorithm will be the main trend in data analyses, such as the reconstruction and analysis of images.

An external file that holds a picture, illustration, etc.
Object name is gr8.jpg

Scale of the physics

Speeding up simulations and identifications of particles with AI

There are many applications or explorations of applications of AI in particle physics. We cannot cover all of them here, but only use lattice quantum chromodynamics (LQCD) and the experiments on the Beijing spectrometer (BES) and the large hadron collider (LHC) to illustrate the power of ML in both theoretical and experimental particle physics.

LQCD studies the nonperturbative properties of QCD by using Monte Carlo simulations on supercomputers to help us understand the strong interaction that binds quarks together to form nucleons. Markov chain Monte Carlo simulations commonly used in LQCD suffer from topological freezing and critical slowing down as the simulations approach the real situation of the actual world. New algorithms with the help of DL are being proposed and tested to overcome those difficulties. 148 , 149 Physical observables are extracted from LQCD data, whose signal-to-noise ratio deteriorates exponentially. For non-Abelian gauge theories, such as QCD, complicated contour deformations can be optimized by using ML to reduce the variance of LQCD data. Proof-of-principle applications in two dimensions have been studied. 150 ML can also be used to reduce the time cost of generating LQCD data. 151

On the experimental side, particle identification (PID) plays an important role. Recently, a few PID algorithms on BES-III were developed, and the ANN 152 is one of them. Also, extreme gradient boosting has been used for multi-dimensional distribution reweighting, muon identification, and cluster reconstruction, and can improve the muon identification. U-Net is a convolutional network for pixel-level semantic segmentation, which is widely used in CV. It has been applied on BES-III to solve the problem of multi-turn curling track finding for the main drift chamber. The average efficiency and purity for the first turn's hits is about 91%, at the threshold of 0.85. Current (and future) particle physics experiments are producing a huge amount of data. Machine leaning can be used to discriminate between signal and overwhelming background events. Examples of data analyses on LHC, using supervised ML, can be found in a 2018 collaboration. 153 To take the potential advantage of quantum computers forward, quantum ML methods are also being investigated, see, for example, Wu et al., 154 and references therein, for proof-of-concept studies.

AI makes nuclear physics powerful

Cosmic ray muon tomography (Muography) 155 is an imaging graphe technology using natural cosmic ray muon radiation rather than artificial radiation to reduce the dangers. As an advantage, this technology can detect high-Z materials without destruction, as muon is sensitive to high-Z materials. The Classification Model Algorithm (CMA) algorithm is based on the classification in the supervised learning and gray system theory, and generates a binary classifier designing and decision function with the input of the muon track, and the output indicates whether the material exists at the location. The AI helps the user to improve the efficiency of the scanning time with muons.

AIso, for nuclear detection, the Cs 2 LiYCl 6 :Ce (CLYC) signal can react to both electrons and neutrons to create a pulse signal, and can therefore be applied to detect both neutrons and electrons, 156 but needs identification of the two particles by analyzing the shapes of the waves, that is n-γ ID. The traditional method has been the PSD (pulse shape discrimination) method, which is used to separate the waves of two particles by analyzing the distribution of the pulse information—such as amplitude, width, raise time, fall time, and the two particles that can be separated when the distribution has two separated Gaussian distributions. The traditional PSD can only analyze single-pulse waves, rather than multipulse waves, when two particles react with CLYC closely. But it can be solved by using an ANN method for classification of the six categories (n,γ,n + n,n + γ,γ + n,γ). Also, there are several parameters that could be used by AI to improve the reconstruction algorithm with high efficiency and less error.

AI-aided condensed matter physics

AI opens up a new avenue for physical science, especially when a trove of data is available. Recent works demonstrate that ML provides useful insights to improve the density functional theory (DFT), in which the single-electron picture of the Kohn-Sham scheme has the difficulty of taking care of the exchange and correlation effects of many-body systems. Yu et al. proposed a Bayesian optimization algorithm to fit the Hubbard U parameter, and the new method can find the optimal Hubbard U through a self-consistent process with good efficiency compared with the linear response method, 157 and boost the accuracy to the near-hybrid-functional-level. Snyder et al. developed an ML density functional for a 1D non-interacting non-spin-polarized fermion system to obtain significantly improved kinetic energy. This method enabled a direct approximation of the kinetic energy of a quantum system and can be utilized in orbital-free DFT modeling, and can even bypass the solving of the Kohn-Sham equation—while maintaining the precision to the quantum chemical level when a strong correlation term is included. Recently, FermiNet showed that the many-body quantum mechanics equations can be solved via AI. AI models also show advantages of capturing the interatom force field. In 2010, the Gaussian approximation potential (GAP) 158 was introduced as a powerful interatomic force field to describe the interactions between atoms. GAP uses kernel regression and invariant many-body representations, and performs quite well. For instance, it can simulate crystallization of amorphous crystals under high pressure fairly accurately. By employing the smooth overlap of the atomic position kernel (SOAP), 159 the accuracy of the potential can be further enhanced and, therefore, the SOAP-GAP can be viewed as a field-leading method for AI molecular dynamic simulation. There are also several other well-developed AI interatomic potentials out there, e.g., crystal graph CNNs provide a widely applicable way of vectorizing crystalline materials; SchNet embeds the continuous-filter convolutional layers into its DNNs for easing molecular dynamic as the potentials are space continuous; DimeNet constructs the directional message passing neural network by adding not only the bond length between atoms but also the bond angle, the dihedral angle, and the interactions between unconnected atoms into the model to obtain good accuracy.

AI helps explore the Universe

AI is one of the newest technologies, while astronomy is one of the oldest sciences. When the two meet, new opportunities for scientific breakthroughs are often triggered. Observations and data analysis play a central role in astronomy. The amount of data collected by modern telescopes has reached unprecedented levels, even the most basic task of constructing a catalog has become challenging with traditional source-finding tools. 160 Astronomers have developed automated and intelligent source-finding tools based on DL, which not only offer significant advantages in operational speed but also facilitate a comprehensive understanding of the Universe by identifying particular forms of objects that cannot be detected by traditional software and visual inspection. 160 , 161

More than a decade ago, a citizen science project called “Galaxy Zoo” was proposed to help label one million images of galaxies collected by the Sloan Digital Sky Survey (SDSS) by posting images online and recruiting volunteers. 162 Larger optical telescopes, in operation or under construction, produce data several orders of magnitude higher than SDSS. Even with volunteers involved, there is no way to analyze the vast amount of data received. The advantages of ML are not limited to source-finding and galaxy classification. In fact, it has a much wider range of applications. For example, CNN plays an important role in detecting and decoding gravitational wave signals in real time, reconstructing all parameters within 2 ms, while traditional algorithms take several days to accomplish the same task. 163 Such DL systems have also been used to automatically generate alerts for transients and track asteroids and other fast-moving near-Earth objects, improving detection efficiency by several orders of magnitude. In addition, astrophysicists are exploring the use of neural networks to measure galaxy clusters and study the evolution of the Universe.

In addition to the amazing speed, neural networks seem to have a deeper understanding of the data than expected and can recognize more complex patterns, indicating that the “machine” is evolving rather than just learning the characteristics of the input data.

AI in chemistry

Chemistry plays an important “central” role in other sciences 164 because it is the investigation of the structure and properties of matter, and identifies the chemical reactions that convert substances into to other substances. Accordingly, chemistry is a data-rich branch of science containing complex information resulting from centuries of experiments and, more recently, decades of computational analysis. This vast treasure trove of data is most apparent within the Chemical Abstract Services, which has collected more than 183 million unique organic and inorganic substances, including alloys, coordination compounds, minerals, mixtures, polymers, and salts, and is expanding by addition of thousands of additional new substances daily. 165 The unlimited complexity in the variety of material compounds explains why chemistry research is still a labor-intensive task. The level of complexity and vast amounts of data within chemistry provides a prime opportunity to achieve significant breakthroughs with the application of AI. First, the type of molecules that can be constructed from atoms are almost unlimited, which leads to unlimited chemical space 166 ; the interconnection of these molecules with all possible combinations of factors, such as temperature, substrates, and solvents, are overwhelmingly large, giving rise to unlimited reaction space. 167 Exploration of the unlimited chemical space and reaction space, and navigating to the optimum ones with the desired properties, is thus practically impossible solely from human efforts. Secondly, in chemistry, the huge assortment of molecules and the interplay of them with the external environments brings a new level of complexity, which cannot be simply predicted using physical laws. While many concepts, rules, and theories have been generalized from centuries of experience from studying trivial (i.e., single component) systems, nontrivial complexities are more likely as we discover that “more is different” in the words of Philip Warren Anderson, American physicist and Nobel Laureate. 168 Nontrivial complexities will occur when the scale changes, and the breaking of symmetry in larger, increasingly complex systems, and the rules will shift from quantitative to qualitative. Due to lack of systematic and analytical theory toward the structures, properties, and transformations of macroscopic substances, chemistry research is thus, incorrectly, guided by heuristics and fragmental rules accumulated over the previous centuries, yielding progress that only proceeds through trial and error. ML will recognize patterns from large amounts of data; thereby offering an unprecedented way of dealing with complexity, and reshaping chemistry research by revolutionizing the way in which data are used. Every sub-field of chemistry, currently, has utilized some form of AI, including tools for chemistry research and data generation, such as analytical chemistry and computational chemistry, as well as application to organic chemistry, catalysis, and medical chemistry, which we discuss herein.

AI breaks the limitations of manual feature selection methods

In analytical chemistry, the extraction of information has traditionally relied heavily on the feature selection techniques, which are based on prior human experiences. Unfortunately, this approach is inefficient, incomplete, and often biased. Automated data analysis based on AI will break the limitations of manual variable selection methods by learning from large amounts of data. Feature selection through DL algorithms enables information extraction from the datasets in NMR, chromatography, spectroscopy, and other analytical tools, 169 thereby improving the model prediction accuracy for analysis. These ML approaches will greatly accelerate the analysis of materials, leading to the rapid discovery of new molecules or materials. Raman scattering, for instance, since its discovery in the 1920s, has been widely employed as a powerful vibrational spectroscopy technology, capable of providing vibrational fingerprints intrinsic to analytes, thus enabling identification of molecules. 170 Recently, ML methods have been trained to recognize features in Raman (or SERS) spectra for the identity of an analyte by applying DL networks, including ANN, CNN, and fully convolutional network for feature engineering. 171 For example, Leong et al. designed a machine-learning-driven “SERS taster” to simultaneously harness useful vibrational information from multiple receptors for enhanced multiplex profiling of five wine flavor molecules at ppm levels. Principal-component analysis is employed for the discrimination of alcohols with varying degrees of substitution, and supported with vector machine discriminant analysis, is used to quantitatively classify all flavors with 100% accuracy. 172 Overall, AI techniques provide the first glimmer of hope for a universal method for spectral data analysis, which is fast, accurate, objective and definitive and with attractive advantages in a wide range of applications.

AI improves the accuracy and efficiency for various levels of computational theory

Complementary to analytical tools, computational chemistry has proven a powerful approach for using simulations to understand chemical properties; however, it is faced with an accuracy-versus-efficiency dilemma. This dilemma greatly limits the application of computational chemistry to real-world chemistry problems. To overcome this dilemma, ML and other AI methods are being applied to improve the accuracy and efficiency for various levels of theory used to describe the effects arising at different time and length scales, in the multi-scaling of chemical reactions. 173 Many of the open challenges in computational chemistry can be solved by ML approaches, for example, solving Schrödinger's equation, 174 developing atomistic 175 or coarse graining 176 potentials, constructing reaction coordinates, 177 developing reaction kinetics models, 178 and identifying key descriptors for computable properties. 179 In addition to analytical chemistry and computational chemistry, several disciplines of chemistry have incorporated AI technology to chemical problems. We discuss the areas of organic chemistry, catalysis, and medical chemistry as examples of where ML has made a significant impact. Many examples exist in literature for other subfields of chemistry and AI will continue to demonstrate breakthroughs in a wide range of chemical applications.

AI enables robotics capable of automating the synthesis of molecules

Organic chemistry studies the structure, property, and reaction of carbon-based molecules. The complexity of the chemical and reaction space, for a given property, presents an unlimited number of potential molecules that can be synthesized by chemists. Further complications are added when faced with the problems of how to synthesize a particular molecule, given that the process relies much on heuristics and laborious testing. Challenges have been addressed by researchers using AI. Given enough data, any properties of interest of a molecule can be predicted by mapping the molecular structure to the corresponding property using supervised learning, without resorting to physical laws. In addition to known molecules, new molecules can be designed by sampling the chemical space 180 using methods, such as autoencoders and CNNs, with the molecules coded as sequences or graphs. Retrosynthesis, the planning of synthetic routes, which was once considered an art, has now become much simpler with the help of ML algorithms. The Chemetica system, 181 for instance, is now capable of autonomous planning of synthetic routes that are subsequently proven to work in the laboratory. Once target molecules and the route of synthesis are determined, suitable reaction conditions can be predicted or optimized using ML techniques. 182

The integration of these AI-based approaches with robotics has enabled fully AI-guided robotics capable of automating the synthesis of small organic molecules without human intervention Figure 9 . 183 , 184

An external file that holds a picture, illustration, etc.
Object name is gr9.jpg

A closed loop workflow to enable automatic and intelligent design, synthesis, and assay of molecules in organic chemistry by AI

AI helps to search through vast catalyst design spaces

Catalytic chemistry originates from catalyst technologies in the chemical industry for efficient and sustainable production of chemicals and fuels. Thus far, it is still a challenging endeavor to make novel heterogeneous catalysts with good performance (i.e., stable, active, and selective) because a catalyst's performance depends on many properties: composition, support, surface termination, particle size, particle morphology, atomic coordination environment, porous structure, and reactor during the reaction. The inherent complexity of catalysis makes discovering and developing catalysts with desired properties more dependent on intuition and experiment, which is costly and time consuming. AI technologies, such as ML, when combined with experimental and in silico high-throughput screening of combinatorial catalyst libraries, can aid catalyst discovery by helping to search through vast design spaces. With a well-defined structure and standardized data, including reaction results and in situ characterization results, the complex association between catalytic structure and catalytic performance will be revealed by AI. 185 , 186 An accurate descriptor of the effect of molecules, molecular aggregation states, and molecular transport, on catalysts, could also be predicted. With this approach, researchers can build virtual laboratories to develop new catalysts and catalytic processes.

AI enables screening of chemicals in toxicology with minimum ethical concerns

A more complicated sub-field of chemistry is medical chemistry, which is a challenging field due to the complex interactions between the exotic substances and the inherent chemistry within a living system. Toxicology, for instance, as a broad field, seeks to predict and eliminate substances (e.g., pharmaceuticals, natural products, food products, and environmental substances), which may cause harm to a living organism. Living organisms are already complex, nearly any known substance can cause toxicity at a high enough exposure because of the already inherent complexity within living organisms. Moreover, toxicity is dependent on an array of other factors, including organism size, species, age, sex, genetics, diet, combination with other chemicals, overall health, and/or environmental context. Given the scale and complexity of toxicity problems, AI is likely to be the only realistic approach to meet regulatory body requirements for screening, prioritization, and risk assessment of chemicals (including mixtures), therefore revolutionizing the landscape in toxicology. 187 In summary, AI is turning chemistry from a labor-intensive branch of science to a highly intelligent, standardized, and automated field, and much more can be achieved compared with the limitation of human labor. Underlying knowledge with new concepts, rules, and theories is expected to advance with the application of AI algorithms. A large portion of new chemistry knowledge leading to significant breakthroughs is expected to be generated from AI-based chemistry research in the decades to come.

Conclusions

This paper carries out a comprehensive survey on the development and application of AI across a broad range of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. Despite the fact that AI has been pervasively used in a wide range of applications, there still exist ML security risks on data and ML models as attack targets during both training and execution phases. Firstly, since the performance of an ML system is highly dependent on the data used to train it, these input data are crucial for the security of the ML system. For instance, adversarial example attacks 188 providing malicious input data often lead the ML system into making false judgments (predictions or categorizations) with small perturbations that are imperceptible to humans; data poisoning by intentionally manipulating raw, training, or testing data can result in a decrease in model accuracy or lead to other error-specific attack purposes. Secondly, ML model attacks include backdoor attacks on DL, CNN, and federated learning that manipulate the model's parameters directly, as well as model stealing attack, model inversion attack, and membership inference attack, which can steal the model parameters or leak the sensitive training data. While a number of defense techniques against these security threats have been proposed, new attack models that target ML systems are constantly emerging. Thus, it is necessary to address the problem of ML security and develop robust ML systems that remain effective under malicious attacks.

Due to the data-driven character of the ML method, features of the training and testing data must be drawn from the same distribution, which is difficult to guarantee in practice. This is because, in practical application, the data source might be different from that in the training dataset. In addition, the data feature distribution may drift over time, which leads to a decline of the performance of the model. Moreover, if the model is trained with only new data, it will lead to catastrophic “forgetting” of the model, which means the model only remembers the new features and forgets the previously learned features. To solve this problem, more and more scholars pay attention on how to make the model have the ability of lifelong learning, that is, a change in the computing paradigm from “offline learning + online reasoning” to “online continuous learning,” and thus give the model have the ability of lifelong learning, just like a human being.

Acknowledgments

This work was partially supported by the National Key R&D Program of China (2018YFA0404603, 2019YFA0704900, 2020YFC1807000, and 2020YFB1313700), the Youth Innovation Promotion Association CAS (2011225, 2012006, 2013002, 2015316, 2016275, 2017017, 2017086, 2017120, 2017204, 2017300, 2017399, 2018356, 2020111, 2020179, Y201664, Y201822, and Y201911), NSFC (nos. 11971466, 12075253, 52173241, and 61902376), the Foundation of State Key Laboratory of Particle Detection and Electronics (SKLPDE-ZZ-201902), the Program of Science & Technology Service Network of CAS (KFJ-STS-QYZX-050), the Fundamental Science Center of the National Nature Science Foundation of China (nos. 52088101 and 11971466), the Scientific Instrument Developing Project of CAS (ZDKYYQ20210003), the Strategic Priority Research Program (B) of CAS (XDB33000000), the National Science Foundation of Fujian Province for Distinguished Young Scholars (2019J06023), the Key Research Program of Frontier Sciences, CAS (nos. ZDBS-LY-7022 and ZDBS-LY-DQC012), the CAS Project for Young Scientists in Basic Research (no. YSBR-005). The study is dedicated to the 10th anniversary of the Youth Innovation Promotion Association of the Chinese Academy of Sciences.

Author contributions

Y.X., Q.W., Z.A., Fei W., C.L., Z.C., J.M.T., and J.Z. conceived and designed the research. Z.A., Q.W., Fei W., Libo.Z., Y.W., F.D., and C.W.-Q. wrote the “ AI in information science ” section. Xin.L. wrote the “ AI in mathematics ” section. J.Q., K.H., W.S., J.W., H.X., Y.H., and X.C. wrote the “ AI in medical science ” section. E.L., C.F., Z.Y., and M.L. wrote the “ AI in materials science ” section. Fang W., R.R., S.D., M.V., and F.K. wrote the “ AI in geoscience ” section. C.H., Z.Z., L.Z., T.Z., J.D., J.Y., L.L., M.L., and T.H. wrote the “ AI in life sciences ” section. Z.L., S.Q., and T.A. wrote the “ AI in physics ” section. X.L., B.Z., X.H., S.C., X.L., W.Z., and J.P.L. wrote the “ AI in chemistry ” section. Y.X., Q.W., and Z.A. wrote the “Abstract,” “ introduction ,” “ history of AI ,” and “ conclusions ” sections.

Commission receives scientific advice on Artificial Intelligence uptake in research and innovation

Today, the Scientific Advice Mechanism (SAM) released its independent policy recommendations on how to facilitate the uptake of Artificial Intelligence (AI) in research and innovation across the EU. The advice is non-binding but may feed into the overall Commission strategy for AI in research and innovation. It is underpinned by an evidence review report published also today.

The Chair of the Group of Chief Scientific Advisors handed over the opinion to Margrethe Vestager, Executive Vice-President for a Europe Fit for the Digital Age, and Iliana Ivanova, Commissioner for Innovation, Research, Culture, Education and Youth.

Executive Vice-President Vestager said:

“There is no better way to boost the uptake of AI in scientific research than asking scientists about what they need the most. Not only are these recommendations concrete. Also they look at multiple aspects which AI and science need to serve us best: significant funding, skills, high quality data, computing power, and of course, guardrails to ensure we keep by the values we believe in.”

Commissioner Ivanova said:

“Artificial Intelligence means a revolution in research and innovation and will drive our future competitiveness. We need to ensure its responsible uptake by our researchers and innovators for the benefit of science but also of the economy and society as a whole. The work of the scientific advisors provides us with a wealth of solid evidence and practical advice to inform our future actions.”

The opinion addresses both the opportunities and challenges of using Artificial Intelligence in science. AI has the potential to revolutionise scientific discovery, accelerate research progress, boost innovation and improve researchers’ productivity. It can strengthen the EU’s position in science and ultimately contribute to solving global societal challenges. On the other hand, it also presents obstacles and risks, for example with obtaining transparent, reproducible results that are essential to robust science in an open society. Furthermore, the efficacy of many existing AI models is regarded as compromised by the quality of data used for their training.

The recommendations of the independent scientific advisors include:

  • Establishment of a European institute for AI in science To counter the dominance of a limited number of corporations over AI infrastructure and to empower public research across diverse disciplines, the scientists advise the creation of a new institute. This facility would offer extensive computational resources, a sustainable cloud infrastructure and specialised AI trainings for scientists.
  • High quality standards for AI systems (i.e., data, computing, codes) AI-powered scientific research requires a vast amount of data. That data should be of high quality, responsibly collected and meticulously curated, ensuring fair access for European researchers and innovators.
  • Transparency of public models The EU should support transparent public AI models helping, among other things, increase the trustworthiness of AI and reinforce the reproducibility of research results.
  • AI tools and technologies specialised for scientific work To help scientists enhance their overall efficiency, SAM advises the EU to support the development of AI tools and technologies specialised for scientific work (e.g., foundation models for science, scientific large language models, AI research assistants and other ways to use AI technologies).
  • AI-powered research with major benefits for EU citizens According to the advice, prioritising AI-powered research in areas like personalised healthcare and social cohesion, where data is abundant but difficult to interpret, would maximize benefits for EU citizens.
  • A Human and Community-Centric Approach The advisors recommend that the EU promotes research into the philosophical, legal, and ethical dimensions of AI in science, ensuring respect of human rights, transparency and accountability. Promoting ‘AI literacy’ would not only enable everyone to enjoy the benefits of this technology, but also strengthen future European research by nurturing and retaining the best talents.

The SAM opinion was requested by Executive Vice-President Vestager in July 2023. It complements a range of material that the Commission has developed on the use of AI in research and innovation. This includes the living Guidelines on the responsible use of generative AI released on 20 March as well as the policy brief on AI in Science released in December 2023, the foresight survey among ERC grantees that are using AI in their research, released in December 2023, and the portfolio analysis of ERC projects using and developing AI, published in March 2024.

The Scientific Advice Mechanism provides independent scientific evidence and policy recommendations to the European institutions by request of the College of Commissioners. It includes the Science Advice for Policy by European Academies ( SAPEA ) consortium, which gathers expertise from more than 100 institutions across Europe, and the Group of Chief Scientific Advisors ( GSCA ), who provide independent guidance informed by the evidence.

More Information

Scientific Advice Mechanism, Group of Chief Scientific Advisors, Successful and timely uptake of Artificial Intelligence in science in the EU, Scientific Opinion No. 15

Scientific Advice Mechanism, Science Advice for Policy by European Academies, Successful and timely uptake of Artificial Intelligence in science in the EU, Evidence Review Report

Living guidelines on the responsible use of generative AI in research

Successful and timely uptake of artificial intelligence in science in the EU - Publications Office of the EU (europa.eu)

AI in science – Harnessing the power of AI to accelerate discovery and foster innovation

Mapping ERC frontier research artificial intelligence

Use and impact of artificial intelligence in the scientific process – Foresight

Share this page

Help | Advanced Search

Computer Science > Computation and Language

Title: bored to death: artificial intelligence research reveals the role of boredom in suicide behavior.

Abstract: Background: Recent advancements in Artificial Intelligence (AI) contributed significantly to suicide assessment, however, our theoretical understanding of this complex behavior is still limited. Objective: This study aimed to harness AI methodologies to uncover hidden risk factors that trigger or aggravate suicide behaviors. Method: The primary dataset included 228,052 Facebook postings by 1,006 users who completed the gold-standard Columbia Suicide Severity Rating Scale. This dataset was analyzed using a bottom-up research pipeline without a-priory hypotheses and its findings were validated using a top-down analysis of a new dataset. This secondary dataset included responses by 1,062 participants to the same suicide scale as well as to well-validated scales measuring depression and boredom. Results: An almost fully automated, AI-guided research pipeline resulted in four Facebook topics that predicted the risk of suicide, of which the strongest predictor was boredom. A comprehensive literature review using APA PsycInfo revealed that boredom is rarely perceived as a unique risk factor of suicide. A complementing top-down path analysis of the secondary dataset uncovered an indirect relationship between boredom and suicide, which was mediated by depression. An equivalent mediated relationship was observed in the primary Facebook dataset as well. However, here, a direct relationship between boredom and suicide risk was also observed. Conclusions: Integrating AI methods allowed the discovery of an under-researched risk factor of suicide. The study signals boredom as a maladaptive 'ingredient' that might trigger suicide behaviors, regardless of depression. Further studies are recommended to direct clinicians' attention to this burdening, and sometimes existential experience.

Submission history

Access paper:.

  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Advertisement

Supported by

In Race to Build A.I., Tech Plans a Big Plumbing Upgrade

The spending that the industry’s giants expect artificial intelligence to require is starting to come into focus — and it is jarringly large.

  • Share full article

A Microsoft booth at a trade fair.

By Karen Weise

Karen Weise covers technology from Seattle.

If 2023 was the tech industry’s year of the A.I. chatbot, 2024 is turning out to be the year of A.I. plumbing. It may not sound as exciting, but tens of billions of dollars are quickly being spent on behind-the-scenes technology for the industry’s A.I. boom.

Companies from Amazon to Meta are revamping their data centers to support artificial intelligence. They are investing in huge new facilities, while even places like Saudi Arabia are racing to build supercomputers to handle A.I. Nearly everyone with a foot in tech or giant piles of money, it seems, is jumping into a spending frenzy that some believe could last for years.

Microsoft, Meta, and Google’s parent company, Alphabet, disclosed this week that they had spent more than $32 billion combined on data centers and other capital expenses in just the first three months of the year. The companies all said in calls with investors that they had no plans to slow down their A.I. spending.

In the clearest sign of how A.I. has become a story about building a massive technology infrastructure, Meta said on Wednesday that it needed to spend billions more on the chips and data centers for A.I. than it had previously signaled.

“I think it makes sense to go for it, and we’re going to,” Mark Zuckerberg, Meta’s chief executive, said in a call with investors.

The eye-popping spending reflects an old parable in Silicon Valley: The people who made the biggest fortunes in California’s gold rush weren’t the miners — they were the people selling the shovels. No doubt Nvidia, whose chip sales have more than tripled over the last year, is the most obvious A.I. winner.

The money being thrown at technology to support artificial intelligence is also a reminder of spending patterns of the dot-com boom of the 1990s. For all of the excitement around web browsers and newfangled e-commerce websites, the companies making the real money were software giants like Microsoft and Oracle, the chipmaker Intel, and Cisco Systems, which made the gear that connected those new computer networks together.

But cloud computing has added a new wrinkle: Since most start-ups and even big companies from other industries contract with cloud computing providers to host their networks, the tech industry’s biggest companies are spending big now in hopes of luring customers.

Google’s capital expenditures — largely the money that goes into building and outfitting data centers — almost doubled in the first quarter, the company said. Microsoft’s were up 22 percent . Amazon, which will report earnings on Tuesday, is expected to add to that growth.

Meta’s investors were unhappy with Mr. Zuckerberg, sending his company’s share price down more than 16 percent after the call. But Mr. Zuckerberg, who just a few years ago was pilloried by shareholders for a planned spending spree on augmented and virtual reality, was unapologetic about the money that his company is throwing at A.I. He urged patience, potentially for years.

“Our optimism and ambitions have just grown quite a bit,” he said.

Investors had no problem stomaching Microsoft’s spending. Microsoft is the only major tech company to report financial details of its generative A.I. business, which it said had contributed to more than a fifth of the growth of its cloud computing business. That amounted to $1 billion in three months, analysts estimated.

Microsoft said its generative A.I. business could have been even bigger — if the company had enough data center supply to meet the demand, underscoring the need to keep on building.

The A.I. investments are creating a halo for Microsoft’s core cloud computing offering, Azure, helping it draw new customers. “Azure has become a port of call for pretty much anybody who is doing any A.I. project,” Satya Nadella, Microsoft’s chief executive, said on Thursday.

(The New York Times sued Microsoft and its partner, OpenAI, in December, claiming copyright infringement of news content related to their A.I. systems.)

Google said sales from its cloud division were up 28 percent, including “an increasing contribution from A.I.”

In a letter to shareholders this month, Andy Jassy, Amazon’s chief executive, said that much attention had been paid to A.I. applications, like ChatGPT, but that the opportunity for more technical efforts, around infrastructure and data, was “gigantic.”

For the computing infrastructure, “the key is the chip inside it,” he said, emphasizing that bringing down costs and wringing more performance out of the chips is key to Amazon’s effort to develop its own A.I. chips .

Infrastructure demands generally fall into two buckets: First, there is building the largest, cutting-edge models, which some A.I. developers say could soon top $1 billion for each new round. Chief executives said that being able to work on developing cutting-edge systems, either directly or with partners, was essential for remaining at the forefront of A.I.

And then there is what’s called inferencing, or querying the models to actually use them. This can involve customers tapping into the systems, like an insurer using generative A.I. to summarize a customer complaint, or the companies themselves putting A.I. directly into their own products, as Meta recently did by embedding a chatbot assistant in Facebook and Instagram. That’s also expensive.

Data centers take time to build and outfit. Chips face supply shortages and costly fabrication. With such long-term bets, Susan Li, Meta’s finance chief, said the company was building with “fungibility.” It wants wiggle room to change how it uses the infrastructure, if the future turns out to be not exactly what it expects.

Karen Weise writes about technology and is based in Seattle. Her coverage focuses on Amazon and Microsoft, two of the most powerful companies in America. More about Karen Weise

Explore Our Coverage of Artificial Intelligence

News  and Analysis

Saudi Arabia is plowing money into glitzy events, computing power and artificial intelligence research, putting it in the middle of an escalating  U.S.-China struggle for technological influence.

Microsoft gave more signs that its hefty investments in A.I.  were beginning to bear fruit, as it reported a 17 percent jump in revenue and a 20 percent increase in profit for the first three months of the year.

Meta projected that revenue for the current quarter  would be lower than what Wall Street anticipated and said it would spend billions of dollars more on its artificial intelligence efforts, even as it reported robust revenue and profits for the first three months of the year.

The Age of A.I.

A new category of apps promises to relieve parents of drudgery, with an assist from A.I . But a family’s grunt work is more human, and valuable, than it seems.

Despite Mark Zuckerberg’s hope for Meta’s A.I. assistant to be the smartest , it struggles with facts, numbers and web search.

Much as ChatGPT generates poetry, a new A.I. system devises blueprints for microscopic mechanisms  that can edit your DNA.

Could A.I. change India’s elections? Avatars are addressing voters by name, in whichever of India’s many languages they speak. Experts see potential for misuse  in a country already rife with disinformation.

Which A.I. system writes the best computer code or generates the most realistic image? Right now, there’s no easy way to answer those questions, our technology columnist writes .

IMAGES

  1. How To Write A Research Paper On Artificial Intelligence?

    artificial intelligence for research papers

  2. (PDF) The Impact of Artificial Intelligence on Global Trends

    artificial intelligence for research papers

  3. (PDF) Artificial intelligence

    artificial intelligence for research papers

  4. Reflective essay: Review paper on artificial intelligence

    artificial intelligence for research papers

  5. (PDF) A Study on Artificial Intelligence Technologies and its

    artificial intelligence for research papers

  6. (PDF) The role of artificial intelligence in healthcare: a structured

    artificial intelligence for research papers

VIDEO

  1. Artificial intelligence Research topics ideas

  2. ScholarWriterAI

  3. Introduction to How to Work on #AIResearchPapers #VPremiumWebinar

  4. Unlock Your Academic Potential: Dr. Karishma Desai's Guide to Elevating Your Undergraduate Profile

  5. Top 10 Breakthroughs in AI Research

  6. AI Is Making Scams Worse

COMMENTS

  1. Scientific discovery in the age of artificial intelligence

    Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect ...

  2. Artificial intelligence: A powerful paradigm for scientific research

    Artificial intelligence (AI) is a rapidly evolving field that has transformed various domains of scientific research. This article provides an overview of the history, applications, challenges, and opportunities of AI in science. It also discusses how AI can enhance scientific creativity, collaboration, and communication. Learn more about the potential and impact of AI in science by reading ...

  3. AIJ

    The journal of Artificial Intelligence (AIJ) welcomes papers on broad aspects of AI that constitute advances in the overall field including, but not limited to, cognition and AI, automated reasoning and inference, case-based reasoning, commonsense reasoning, computer vision, constraint processing, ethical AI, heuristic search, human interfaces, intelligent robotics, knowledge representation ...

  4. Journal of Artificial Intelligence Research

    The Journal of Artificial Intelligence Research (JAIR) is dedicated to the rapid dissemination of important research results to the global artificial intelligence (AI) community. The journal's scope encompasses all areas of AI, including agents and multi-agent systems, automated reasoning, constraint processing and search, knowledge ...

  5. Artificial intelligence in information systems research: A systematic

    identify the opportunities for future AI research in IS. The structure of the paper is as follows. First, an introduction to related work on AI in the IS field is presented. ... Russel & Norvig's book Artificial Intelligence: A Modern Approach was the most frequently cited source for defining AI, though the actual edition of the book varied, ...

  6. Artificial intelligence and machine learning research: towards digital

    Artificial intelligence and machine learning research: towards digital transformation at a global scale ... A variety of innovative topics are included in the agenda of the published papers in this special issue including topics such as: ... such as Artificial Intelligence technologies, are seen today as promising instruments that could pave ...

  7. The present and future of AI

    The 2021 report is the second in a series that will be released every five years until 2116. Titled "Gathering Strength, Gathering Storms," the report explores the various ways AI is increasingly touching people's lives in settings that range from movie recommendations and voice assistants to autonomous driving and automated medical ...

  8. (PDF) The Impact of Artificial Intelligence on Academics: A Concise

    The paper focuses specifically on the incorporation of artificial intelligence (AI), which includes a wide range of technologies and methods, such as machine learning, adaptive learning, natural ...

  9. Journal of Artificial Intelligence Research

    The Journal of Artificial Intelligence Research (www.jair.org) covers all areas of artificial intelligence, publishing refereed research articles, survey articles, and technical notes. JAIR was established in 1993 as one of the very first open access scientific journals on the Web. Since it began publication in 1993, JAIR has had a major impact on the field, and has been continuously ranked as ...

  10. Artificial Intelligence authors/titles recent submissions

    Comments: This paper has been accepted at IJCAI 2024 (the 33rd International Joint Conference on Artificial Intelligence) Subjects: Artificial Intelligence ... Experiment (hep-ex); Artificial Intelligence (cs.AI); Machine Learning (cs.LG); High Energy Physics - Phenomenology (hep-ph) arXiv:2404.14325 (cross-list from cs.NE) [pdf, other]

  11. 578339 PDFs

    Artificial Intelligence | Explore the latest full-text research PDFs, articles, conference papers, preprints and more on ARTIFICIAL INTELLIGENCE. Find methods information, sources, references or ...

  12. Home

    Artificial Intelligence Review is a fully open access journal publishing state-of-the-art research in artificial intelligence and cognitive science. Publishes critical evaluations of applications, techniques, and algorithms in the field. Provides a platform for researchers and application developers. Presents refereed survey and tutorial ...

  13. PDF The Impact of Artificial Intelligence on Innovation

    ABSTRACT. Artificial intelligence may greatly increase the efficiency of the existing economy. But it may have an even larger impact by serving as a new general-purpose "method of invention" that can reshape the nature of the innovation process and the organization of R&D.

  14. Research ethics and artificial intelligence for global health

    The ethical governance of Artificial Intelligence (AI) in health care and public health continues to be an urgent issue for attention in policy, research, and practice. In this paper we report on central themes related to challenges and strategies for promoting ethics in research involving AI in global health, arising from the Global Forum on Bioethics in Research (GFBR), held in Cape Town ...

  15. The impact of artificial intelligence on human society and bioethics

    Bioethics is not a matter of calculation but a process of conscientization. Although AI designers can up-load all information, data, and programmed to AI to function as a human being, it is still a machine and a tool. AI will always remain as AI without having authentic human feelings and the capacity to commiserate.

  16. AI Index Report

    Mission. The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI.

  17. AI technologies for education: Recent research & future directions

    2.1 Prolific countries. Artificial intelligence in education (AIEd) research has been conducted in many countries around the world. The 40 articles reported AIEd research studies in 16 countries (See Table 1).USA was so far the most prolific, with nine articles meeting all criteria applied in this study, and noticeably seven of them were conducted in K-12.

  18. AI Tools for Research

    The resources described in the table represent an incomplete list of tools specifically geared towards exploring and synthesizing research. As generative AI becomes more integrated in online search tools, even the very early stages of research and topic development could incorporate AI.If you have any questions about using these tools for your research, please Email a Librarian.

  19. (PDF) Research paper on Artificial Intelligence

    "Best Paper Award Second Prize" ICGECD 2020 -2nd International Conference on General Education and Contemporary Development, October 23-24, 2020 with our research paper Artificial intelligence ...

  20. Artificial intelligence: A powerful paradigm for scientific research

    Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. ... The aim of this paper is to provide a broad research guideline on fundamental sciences with ...

  21. Commission receives scientific advice on Artificial Intelligence uptake

    Today, the Scientific Advice Mechanism (SAM) released its independent policy recommendations on how to facilitate the uptake of Artificial Intelligence (AI) in research and innovation across the EU. The advice is non-binding but may feed into the overall Commission strategy for AI in research and innovation.

  22. Bored to Death: Artificial Intelligence Research Reveals the Role of

    Background: Recent advancements in Artificial Intelligence (AI) contributed significantly to suicide assessment, however, our theoretical understanding of this complex behavior is still limited. Objective: This study aimed to harness AI methodologies to uncover hidden risk factors that trigger or aggravate suicide behaviors. Method: The primary dataset included 228,052 Facebook postings by ...

  23. Industry 4.0 Transformation: Analysing the Impact of Artificial ...

    The importance of artificial intelligence in the banking industry is reflected in the speed at which financial institutions are adopting and implementing AI solutions to improve their services and adapt to new market demands. The aim of this research is to conduct a bibliometric analysis of the involvement of artificial intelligence in the banking sector to provide a comprehensive overview of ...

  24. Artificial intelligence for cybersecurity: Literature review and future

    Artificial intelligence (AI) is a powerful technology that helps cybersecurity teams automate repetitive tasks, accelerate threat detection and response, and improve the accuracy of their actions to strengthen the security posture against various security issues and cyberattacks. ... To find the pertinent papers that address the research ...

  25. The Ethics of Artificial Intelligence: exacerbated problems ...

    Floridi, Luciano, The Ethics of Artificial Intelligence: exacerbated problems, renewed problems, unprecedented problems - Introduction to the Special Issue of the American Philosophical Quarterly dedicated to The Ethics of AI (April 20, 2024). ... Research Paper Series. Follow. Centre for Digital Ethics (CEDE) Research Paper Series. Subscribe ...

  26. In Race to Build A.I., Tech Plans a Big Plumbing Upgrade

    Saudi Arabia is plowing money into glitzy events, computing power and artificial intelligence research, putting it in the middle of an escalating U.S.-China struggle for technological influence. ...