Microsoft

Get step-by-step solutions to your math problems

qr code

Try Math Solver

Key Features

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

What can QuickMath do?

QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students.

  • The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction.
  • The equations section lets you solve an equation or system of equations. You can usually find the exact answer or, if necessary, a numerical answer to almost any accuracy you require.
  • The inequalities section lets you solve an inequality or a system of inequalities for a single variable. You can also plot inequalities in two variables.
  • The calculus section will carry out differentiation as well as definite and indefinite integration.
  • The matrices section contains commands for the arithmetic manipulation of matrices.
  • The graphs section contains commands for plotting equations and inequalities.
  • The numbers section has a percentages command for explaining the most common types of percentage problems and a section for dealing with scientific notation.

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions

Math Solver

Geogebra math solver.

Get accurate solutions and step-by-step explanations for algebra and other math problems, while enhancing your problem-solving skills!

person with long dark hair sit at a table working at a laptop. 3x+2 and x² equations float in the air signifying that she is working on math problems

Want Better Math Grades?

✅ Unlimited Solutions

✅ Step-by-Step Answers

✅ Available 24/7

➕ Free Bonuses ($1085 value!)

On this page

  • Search IntMath
  • Math interactives
  • About (site info)
  • Uses of Trignometry
  • ASCIIMath input, KaTeX output
  • ASCIIMath input, LaTeX and KaTeX output
  • Send Math in emails
  • Syntax for ASCIIMathML
  • Math Display Experiments
  • Scientific Notebook

Math Problem Solver

Related Sections

Math Tutoring

Need help? Chat with a tutor anytime, 24/7.

AI Math Calculator Reviews

This tool combines the power of mathematical computation engine that excels at solving mathematical formulas with the power of artificial intelligence large language models to parse and generate natural language answers. This creates a math problem solver that's more accurate than ChatGPT, more flexible than a math calculator, and provides answers faster than a human tutor.

Sign up for free here .

Problem Solver Subjects

Our math problem solver that lets you input a wide variety of math math problems and it will provide a step by step answer. This math solver excels at math word problems as well as a wide range of math subjects.

  • Math Word Problems
  • Pre-Algebra
  • Geometry Graphing
  • Trigonometry
  • Precalculus
  • Finite Math
  • Linear Algebra

Here are example math problems within each subject that can be input into the calculator and solved. This list is constanstly growing as functionality is added to the calculator.

Basic Math Solutions

Below are examples of basic math problems that can be solved.

  • Long Arithmetic
  • Rational Numbers
  • Operations with Fractions
  • Ratios, Proportions, Percents
  • Measurement, Area, and Volume
  • Factors, Fractions, and Exponents
  • Unit Conversions
  • Data Measurement and Statistics
  • Points and Line Segments

Math Word Problem Solutions

Math word problems require interpreting what is being asked and simplifying that into a basic math equation. Once you have the equation you can then enter that into the problem solver as a basic math or algebra question to be correctly solved. Below are math word problem examples and their simplified forms.

Word Problem: Rachel has 17 apples. She gives some to Sarah. Sarah now has 8 apples. How many apples did Rachel give her?

Simplified Equation: 17 - x = 8

Word Problem: Rhonda has 12 marbles more than Douglas. Douglas has 6 marbles more than Bertha. Rhonda has twice as many marbles as Bertha has. How many marbles does Douglas have?

Variables: Rhonda's marbles is represented by (r), Douglas' marbles is represented by (d) and Bertha's marbles is represented by (b)

Simplified Equation: {r = d + 12, d = b + 6, r = 2 �� b}

Word Problem: if there are 40 cookies all together and Angela takes 10 and Brett takes 5 how many are left?

Simplified: 40 - 10 - 5

Pre-Algebra Solutions

Below are examples of Pre-Algebra math problems that can be solved.

  • Variables, Expressions, and Integers
  • Simplifying and Evaluating Expressions
  • Solving Equations
  • Multi-Step Equations and Inequalities
  • Ratios, Proportions, and Percents
  • Linear Equations and Inequalities

Algebra Solutions

Below are examples of Algebra math problems that can be solved.

  • Algebra Concepts and Expressions
  • Points, Lines, and Line Segments
  • Simplifying Polynomials
  • Factoring Polynomials
  • Linear Equations
  • Absolute Value Expressions and Equations
  • Radical Expressions and Equations
  • Systems of Equations
  • Quadratic Equations
  • Inequalities
  • Complex Numbers and Vector Analysis
  • Logarithmic Expressions and Equations
  • Exponential Expressions and Equations
  • Conic Sections
  • Vector Spaces
  • 3d Coordinate System
  • Eigenvalues and Eigenvectors
  • Linear Transformations
  • Number Sets
  • Analytic Geometry

Trigonometry Solutions

Below are examples of Trigonometry math problems that can be solved.

  • Algebra Concepts and Expressions Review
  • Right Triangle Trigonometry
  • Radian Measure and Circular Functions
  • Graphing Trigonometric Functions
  • Simplifying Trigonometric Expressions
  • Verifying Trigonometric Identities
  • Solving Trigonometric Equations
  • Complex Numbers
  • Analytic Geometry in Polar Coordinates
  • Exponential and Logarithmic Functions
  • Vector Arithmetic

Precalculus Solutions

Below are examples of Precalculus math problems that can be solved.

  • Operations on Functions
  • Rational Expressions and Equations
  • Polynomial and Rational Functions
  • Analytic Trigonometry
  • Sequences and Series
  • Analytic Geometry in Rectangular Coordinates
  • Limits and an Introduction to Calculus

Calculus Solutions

Below are examples of Calculus math problems that can be solved.

  • Evaluating Limits
  • Derivatives
  • Applications of Differentiation
  • Applications of Integration
  • Techniques of Integration
  • Parametric Equations and Polar Coordinates
  • Differential Equations

Statistics Solutions

Below are examples of Statistics problems that can be solved.

  • Algebra Review
  • Average Descriptive Statistics
  • Dispersion Statistics
  • Probability
  • Probability Distributions
  • Frequency Distribution
  • Normal Distributions
  • t-Distributions
  • Hypothesis Testing
  • Estimation and Sample Size
  • Correlation and Regression

Finite Math Solutions

Below are examples of Finite Math problems that can be solved.

  • Polynomials and Expressions
  • Equations and Inequalities
  • Linear Functions and Points
  • Systems of Linear Equations
  • Mathematics of Finance
  • Statistical Distributions

Linear Algebra Solutions

Below are examples of Linear Algebra math problems that can be solved.

  • Introduction to Matrices
  • Linear Independence and Combinations

Chemistry Solutions

Below are examples of Chemistry problems that can be solved.

  • Unit Conversion
  • Atomic Structure
  • Molecules and Compounds
  • Chemical Equations and Reactions
  • Behavior of Gases
  • Solutions and Concentrations

Physics Solutions

Below are examples of Physics math problems that can be solved.

  • Static Equilibrium
  • Dynamic Equilibrium
  • Kinematics Equations
  • Electricity
  • Thermodymanics

Geometry Graphing Solutions

Below are examples of Geometry and graphing math problems that can be solved.

  • Step By Step Graphing
  • Linear Equations and Functions
  • Polar Equations

Looking for the old Mathway Calculator? We've moved it to here .

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.

Email Address Sign Up

To get additional practice, check out the sample problems in each of the topic above. We provide full solutions with steps for all practice problems. There's no better way to find math help online than with Cymath, so also make sure you download our mobile app for and today! Learn more than what the answer is - with the math helper app, you'll learn the steps behind it too.

Even simple math problems become easier to solve when broken down into steps. From basic additions to calculus, the process of problem solving usually takes a lot of practice before answers could come easily. As problems become more complex, it becomes even more important to understand the step-by-step process by which we solve them. At Cymath, our goal is to take your understanding of math to a new level.

If you find Cymath useful, try today! It offers an ad-free experience and more detailed explanations. In short, goes into more depth than the standard version, giving students more resources to learn the step-by-step process of solving math problems.

Skip Navigation

Understand math,  one step at a time

Enter your problem below to see  how our equation solver works

Benefits of a Chegg Premium membership
Chegg Math Solver
Chegg Math Solver
Solution to your math problem
Basic explanation of your math problem   yes yes
Detailed explanation with sub-steps   no yes
Ad-free on app   yes yes
Ad-free on web   no yes
Graphing calculator   no yes

Example math equations:

Never be outnumbered by your math homework again.

  • Understand the how and why See how to tackle your equations and why to use a particular method to solve it — making it easier for you to learn.
  • Learn from detailed step-by-step explanations Get walked through each step of the solution to know exactly what path gets you to the right answer.
  • Dig deeper into specific steps Our solver does what a calculator won’t: breaking down key steps into smaller sub-steps to show you every part of the solution.

Help for whatever math you're studying

  • Linear equations 1
  • Negative numbers
  • Linear inequalities 1
  • Quadratic equations
  • Linear equations 2
  • Systems of equations 1
  • Linear inequalities 2
  • Polynomials and quadratic expressions
  • Systems of equations 2
  • Exponential and logarithmic functions
  • Adding matrices
  • Multiplying matrices
  • Matrix inverses and determinants
  • Fundamental derivatives
  • General derivatives
  • Curve sketching
  • Fundamental integrals
  • General integrals
  • Matrix operations
  • Inverse matrices
  • Determinants
  • Characteristic polynomial
  • Eigenvalues

© 2003-2024 Chegg Inc. All rights reserved.

math problem solving answer

Logo

Upload a screenshot and solve any math, physics, or accounting problem instantly with MathGPT!

Drag & drop an image file here, or click to select an image.

Math Problems, Tests, Forums

  • Math Forum/Help
  • Problem Solver
  • College Math
  • Word Problems

Math Word Problems and Solutions - Distance, Speed, Time

Problem 1 A salesman sold twice as much pears in the afternoon than in the morning. If he sold 360 kilograms of pears that day, how many kilograms did he sell in the morning and how many in the afternoon? Click to see solution Solution: Let $x$ be the number of kilograms he sold in the morning.Then in the afternoon he sold $2x$ kilograms. So, the total is $x + 2x = 3x$. This must be equal to 360. $3x = 360$ $x = \frac{360}{3}$ $x = 120$ Therefore, the salesman sold 120 kg in the morning and $2\cdot 120 = 240$ kg in the afternoon.

Problem 2 Mary, Peter, and Lucy were picking chestnuts. Mary picked twice as much chestnuts than Peter. Lucy picked 2 kg more than Peter. Together the three of them picked 26 kg of chestnuts. How many kilograms did each of them pick? Click to see solution Solution: Let $x$ be the amount Peter picked. Then Mary and Lucy picked $2x$ and $x+2$, respectively. So $x+2x+x+2=26$ $4x=24$ $x=6$ Therefore, Peter, Mary, and Lucy picked 6, 12, and 8 kg, respectively.

Problem 3 Sophia finished $\frac{2}{3}$ of a book. She calculated that she finished 90 more pages than she has yet to read. How long is her book? Click to see solution Solution: Let $x$ be the total number of pages in the book, then she finished $\frac{2}{3}\cdot x$ pages. Then she has $x-\frac{2}{3}\cdot x=\frac{1}{3}\cdot x$ pages left. $\frac{2}{3}\cdot x-\frac{1}{3}\cdot x=90$ $\frac{1}{3}\cdot x=90$ $x=270$ So the book is 270 pages long.

Problem 4 A farming field can be ploughed by 6 tractors in 4 days. When 6 tractors work together, each of them ploughs 120 hectares a day. If two of the tractors were moved to another field, then the remaining 4 tractors could plough the same field in 5 days. How many hectares a day would one tractor plough then? Click to see solution Solution: If each of $6$ tractors ploughed $120$ hectares a day and they finished the work in $4$ days, then the whole field is: $120\cdot 6 \cdot 4 = 720 \cdot 4 = 2880$ hectares. Let's suppose that each of the four tractors ploughed $x$ hectares a day. Therefore in 5 days they ploughed $5 \cdot 4 \cdot x = 20 \cdot x$ hectares, which equals the area of the whole field, 2880 hectares. So, we get $20x = 2880$ $ x = \frac{2880}{20} = 144$. Hence, each of the four tractors would plough 144 hectares a day.

Problem 5 A student chose a number, multiplied it by 2, then subtracted 138 from the result and got 102. What was the number he chose? Click to see solution Solution: Let $x$ be the number he chose, then $2\cdot x - 138 = 102$ $2x = 240$ $x = 120$

Problem 6 I chose a number and divide it by 5. Then I subtracted 154 from the result and got 6. What was the number I chose? Click to see solution Solution: Let $x$ be the number I chose, then $\frac{x}{5}-154=6$ $\frac{x}{5}=160$ $x=800$

V (km/hr) t (hr) S (km)
Car x + 5 4 4(x +5)
Truck X 4 4x

Problem 8 One side of a rectangle is 3 cm shorter than the other side. If we increase the length of each side by 1 cm, then the area of the rectangle will increase by 18 cm 2 . Find the lengths of all sides. Click to see solution Solution: Let $x$ be the length of the longer side $x \gt 3$, then the other side's length is $x-3$ cm. Then the area is S 1 = x(x - 3) cm 2 . After we increase the lengths of the sides they will become $(x +1)$ and $(x - 3 + 1) = (x - 2)$ cm long. Hence the area of the new rectangle will be $A_2 = (x + 1)\cdot(x - 2)$ cm 2 , which is 18 cm 2 more than the first area. Therefore $A_1 +18 = A_2$ $x(x - 3) + 18 = (x + 1)(x - 2)$ $x^2 - 3x + 18 = x^2 + x - 2x - 2$ $2x = 20$ $x = 10$. So, the sides of the rectangle are $10$ cm and $(10 - 3) = 7$ cm long.

Problem 9 The first year, two cows produced 8100 litres of milk. The second year their production increased by 15% and 10% respectively, and the total amount of milk increased to 9100 litres a year. How many litres were milked from each cow each year? Click to see solution Solution: Let x be the amount of milk the first cow produced during the first year. Then the second cow produced $(8100 - x)$ litres of milk that year. The second year, each cow produced the same amount of milk as they did the first year plus the increase of $15\%$ or $10\%$. So $8100 + \frac{15}{100}\cdot x + \frac{10}{100} \cdot (8100 - x) = 9100$ Therefore $8100 + \frac{3}{20}x + \frac{1}{10}(8100 - x) = 9100$ $\frac{1}{20}x = 190$ $x = 3800$ Therefore, the cows produced 3800 and 4300 litres of milk the first year, and $4370$ and $4730$ litres of milk the second year, respectively.

Problem 10 The distance between stations A and B is 148 km. An express train left station A towards station B with the speed of 80 km/hr. At the same time, a freight train left station B towards station A with the speed of 36 km/hr. They met at station C at 12 pm, and by that time the express train stopped at at intermediate station for 10 min and the freight train stopped for 5 min. Find: a) The distance between stations C and B. b) The time when the freight train left station B. Click to see solution Solution a) Let x be the distance between stations B and C. Then the distance from station C to station A is $(148 - x)$ km. By the time of the meeting at station C, the express train travelled for $\frac{148-x}{80}+\frac{10}{60}$ hours and the freight train travelled for $\frac{x}{36}+\frac{5}{60}$ hours. The trains left at the same time, so: $\frac{148 - x}{80} + \frac{1}{6} = \frac{x}{36} + \frac{1}{12}$. The common denominator for 6, 12, 36, 80 is 720. Then $9(148 - x) +120 = 20x +60$ $1332 - 9x + 120 = 20x + 60$ $29x = 1392$ $x = 48$. Therefore the distance between stations B and C is 48 km. b) By the time of the meeting at station C the freight train rode for $\frac{48}{36} + \frac{5}{60}$ hours, i.e. $1$ hour and $25$ min. Therefore it left station B at $12 - (1 + \frac{25}{60}) = 10 + \frac{35}{60}$ hours, i.e. at 10:35 am.

Problem 11 Susan drives from city A to city B. After two hours of driving she noticed that she covered 80 km and calculated that, if she continued driving at the same speed, she would end up been 15 minutes late. So she increased her speed by 10 km/hr and she arrived at city B 36 minutes earlier than she planned. Find the distance between cities A and B. Click to see solution Solution: Let $x$ be the distance between A and B. Since Susan covered 80 km in 2 hours, her speed was $V = \frac{80}{2} = 40$ km/hr. If she continued at the same speed she would be $15$ minutes late, i.e. the planned time on the road is $\frac{x}{40} - \frac{15}{60}$ hr. The rest of the distance is $(x - 80)$ km. $V = 40 + 10 = 50$ km/hr. So, she covered the distance between A and B in $2 +\frac{x - 80}{50}$ hr, and it was 36 min less than planned. Therefore, the planned time was $2 + \frac{x -80}{50} + \frac{36}{60}$. When we equalize the expressions for the scheduled time, we get the equation: $\frac{x}{40} - \frac{15}{60} = 2 + \frac{x -80}{50} + \frac{36}{60}$ $\frac{x - 10}{40} = \frac{100 + x - 80 + 30}{50}$ $\frac{x - 10}{4} = \frac{x +50}{5}$ $5x - 50 = 4x + 200$ $x = 250$ So, the distance between cities A and B is 250 km.

Problem 12 To deliver an order on time, a company has to make 25 parts a day. After making 25 parts per day for 3 days, the company started to produce 5 more parts per day, and by the last day of work 100 more parts than planned were produced. Find how many parts the company made and how many days this took. Click to see solution Solution: Let $x$ be the number of days the company worked. Then 25x is the number of parts they planned to make. At the new production rate they made: $3\cdot 25 + (x - 3)\cdot 30 = 75 + 30(x - 3)$ Therefore: $25 x = 75 + 30(x -3) - 100$ $25x = 75 +30x -90 - 100$ $190 -75 = 30x -25$ $115 = 5x$ $x = 23$ So the company worked 23 days and they made $23\cdot 25+100 = 675$ pieces.

Problem 13 There are 24 students in a seventh grade class. They decided to plant birches and roses at the school's backyard. While each girl planted 3 roses, every three boys planted 1 birch. By the end of the day they planted $24$ plants. How many birches and roses were planted? Click to see solution Solution: Let $x$ be the number of roses. Then the number of birches is $24 - x$, and the number of boys is $3\times (24-x)$. If each girl planted 3 roses, there are $\frac{x}{3}$ girls in the class. We know that there are 24 students in the class. Therefore $\frac{x}{3} + 3(24 - x) = 24$ $x + 9(24 - x) = 3\cdot 24$ $x +216 - 9x = 72$ $216 - 72 = 8x$ $\frac{144}{8} = x$ $x = 18$ So, students planted 18 roses and 24 - x = 24 - 18 = 6 birches.

Problem 14 A car left town A towards town B driving at a speed of V = 32 km/hr. After 3 hours on the road the driver stopped for 15 min in town C. Because of a closed road he had to change his route, making the trip 28 km longer. He increased his speed to V = 40 km/hr but still he was 30 min late. Find: a) The distance the car has covered. b) The time that took it to get from C to B. Click to see solution Solution: From the statement of the problem we don't know if the 15 min stop in town C was planned or it was unexpected. So we have to consider both cases. A The stop was planned. Let us consider only the trip from C to B, and let $x$ be the number of hours the driver spent on this trip. Then the distance from C to B is $S = 40\cdot x$ km. If the driver could use the initial route, it would take him $x - \frac{30}{60} = x - \frac{1}{2}$ hours to drive from C to B. The distance from C to B according to the initially itinerary was $(x - \frac{1}{2})\cdot 32$ km, and this distance is $28$ km shorter than $40\cdot x$ km. Then we have the equation $(x - 1/2)\cdot 32 + 28 = 40x$ $32x -16 +28 = 40x$ $-8x = -12$ $8x = 12$ $x = \frac{12}{8}$ $x = 1 \frac{4}{8} = 1 \frac{1}{2} = 1 \frac{30}{60} =$ 1 hr 30 min. So, the car covered the distance between C and B in 1 hour and 30 min. The distance from A to B is $3\cdot 32 + \frac{12}{8}\cdot 40 = 96 + 60 = 156$ km. B Suppose it took $x$ hours for him to get from C to B. Then the distance is $S = 40\cdot x$ km. The driver did not plan the stop at C. Let we accept that he stopped because he had to change the route. It took $x - \frac{30}{60} + \frac{15}{60} = x - \frac{15}{60} = x - \frac{1}{4}$ h to drive from C to B. The distance from C to B is $32(x - \frac{1}{4})$ km, which is $28$ km shorter than $40\cdot x$, i.e. $32(x - \frac{1}{4}) + 28 = 40x$ $32x - 8 +28 = 40x$ $20= 8x$ $x = \frac{20}{8} = \frac{5}{2} = 2 \text{hr } 30 \text{min}.$ The distance covered equals $ 40 \times 2.5 = 100 km$.

Problem 15 If a farmer wants to plough a farm field on time, he must plough 120 hectares a day. For technical reasons he ploughed only 85 hectares a day, hence he had to plough 2 more days than he planned and he still has 40 hectares left. What is the area of the farm field and how many days the farmer planned to work initially? Click to see solution Solution: Let $x$ be the number of days in the initial plan. Therefore, the whole field is $120\cdot x$ hectares. The farmer had to work for $x + 2$ days, and he ploughed $85(x + 2)$ hectares, leaving $40$ hectares unploughed. Then we have the equation: $120x = 85(x + 2) + 40$ $35x = 210$ $x = 6$ So the farmer planned to have the work done in 6 days, and the area of the farm field is $120\cdot 6 = 720$ hectares.

Problem 16 A woodworker normally makes a certain number of parts in 24 days. But he was able to increase his productivity by 5 parts per day, and so he not only finished the job in only 22 days but also he made 80 extra parts. How many parts does the woodworker normally makes per day and how many pieces does he make in 24 days? Click to see solution Solution: Let $x$ be the number of parts the woodworker normally makes daily. In 24 days he makes $24\cdot x$ pieces. His new daily production rate is $x + 5$ pieces and in $22$ days he made $22 \cdot (x + 5)$ parts. This is 80 more than $24\cdot x$. Therefore the equation is: $24\cdot x + 80 = 22(x +5)$ $30 = 2x$ $x = 15$ Normally he makes 15 parts a day and in 24 days he makes $15 \cdot 24 = 360$ parts.

Problem 17 A biker covered half the distance between two towns in 2 hr 30 min. After that he increased his speed by 2 km/hr. He covered the second half of the distance in 2 hr 20 min. Find the distance between the two towns and the initial speed of the biker. Click to see solution Solution: Let x km/hr be the initial speed of the biker, then his speed during the second part of the trip is x + 2 km/hr. Half the distance between two cities equals $2\frac{30}{60} \cdot x$ km and $2\frac{20}{60} \cdot (x + 2)$ km. From the equation: $2\frac{30}{60} \cdot x = 2\frac{20}{60} \cdot (x+2)$ we get $x = 28$ km/hr. The intial speed of the biker is 28 km/h. Half the distance between the two towns is $2 h 30 min \times 28 = 2.5 \times 28 = 70$. So the distance is $2 \times 70 = 140$ km.

Problem 18 A train covered half of the distance between stations A and B at the speed of 48 km/hr, but then it had to stop for 15 min. To make up for the delay, it increased its speed by $\frac{5}{3}$ m/sec and it arrived to station B on time. Find the distance between the two stations and the speed of the train after the stop. Click to see solution Solution: First let us determine the speed of the train after the stop. The speed was increased by $\frac{5}{3}$ m/sec $= \frac{5\cdot 60\cdot 60}{\frac{3}{1000}}$ km/hr = $6$ km/hr. Therefore, the new speed is $48 + 6 = 54$ km/hr. If it took $x$ hours to cover the first half of the distance, then it took $x - \frac{15}{60} = x - 0.25$ hr to cover the second part. So the equation is: $48 \cdot x = 54 \cdot (x - 0.25)$ $48 \cdot x = 54 \cdot x - 54\cdot 0.25$ $48 \cdot x - 54 \cdot x = - 13.5$ $-6x = - 13.5$ $x = 2.25$ h. The whole distance is $2 \times 48 \times 2.25 = 216$ km.

Problem 19 Elizabeth can get a certain job done in 15 days, and Tony can finish only 75% of that job within the same time. Tony worked alone for several days and then Elizabeth joined him, so they finished the rest of the job in 6 days, working together. For how many days have each of them worked and what percentage of the job have each of them completed? Click to see solution Solution: First we will find the daily productivity of every worker. If we consider the whole job as unit (1), Elizabeth does $\frac{1}{15}$ of the job per day and Tony does $75\%$ of $\frac{1}{15}$, i.e. $\frac{75}{100}\cdot \frac{1}{15} = \frac{1}{20}$. Suppose that Tony worked alone for $x$ days. Then he finished $\frac{x}{20}$ of the total job alone. Working together for 6 days, the two workers finished $6\cdot (\frac{1}{15}+\frac{1}{20}) = 6\cdot \frac{7}{60} = \frac{7}{10}$ of the job. The sum of $\frac{x}{20}$ and $\frac{7}{10}$ gives us the whole job, i.e. $1$. So we get the equation: $\frac{x}{20}+\frac{7}{10}=1$ $\frac{x}{20} = \frac{3}{10}$ $x = 6$. Tony worked for 6 + 6 = 12 days and Elizabeth worked for $6$ days. The part of job done is $12\cdot \frac{1}{20} = \frac{60}{100} = 60\%$ for Tony, and $6\cdot \frac{1}{15} = \frac{40}{100} = 40\%$ for Elizabeth.

Problem 20 A farmer planned to plough a field by doing 120 hectares a day. After two days of work he increased his daily productivity by 25% and he finished the job two days ahead of schedule. a) What is the area of the field? b) In how many days did the farmer get the job done? c) In how many days did the farmer plan to get the job done? Click to see solution Solution: First of all we will find the new daily productivity of the farmer in hectares per day: 25% of 120 hectares is $\frac{25}{100} \cdot 120 = 30$ hectares, therefore $120 + 30 = 150$ hectares is the new daily productivity. Lets x be the planned number of days allotted for the job. Then the farm is $120\cdot x$ hectares. On the other hand, we get the same area if we add $120 \cdot 2$ hectares to $150(x -4)$ hectares. Then we get the equation $120x = 120\cdot 2 + 150(x -4)$ $x = 12$ So, the job was initially supposed to take 12 days, but actually the field was ploughed in 12 - 2 =10 days. The field's area is $120 \cdot 12 = 1440$ hectares.

Problem 21 To mow a grass field a team of mowers planned to cover 15 hectares a day. After 4 working days they increased the daily productivity by $33 \times \frac{1}{3}\%$, and finished the work 1 day earlier than it was planned. A) What is the area of the grass field? B) How many days did it take to mow the whole field? C) How many days were scheduled initially for this job? Hint : See problem 20 and solve by yourself. Answer: A) 120 hectares; B) 7 days; C) 8 days.

Problem 22 A train travels from station A to station B. If the train leaves station A and makes 75 km/hr, it arrives at station B 48 minutes ahead of scheduled. If it made 50 km/hr, then by the scheduled time of arrival it would still have 40 km more to go to station B. Find: A) The distance between the two stations; B) The time it takes the train to travel from A to B according to the schedule; C) The speed of the train when it's on schedule. Click to see solution Solution: Let $x$ be the scheduled time for the trip from A to B. Then the distance between A and B can be found in two ways. On one hand, this distance equals $75(x - \frac{48}{60})$ km. On the other hand, it is $50x + 40$ km. So we get the equation: $75(x - \frac{48}{60}) = 50x + 40$ $x = 4$ hr is the scheduled travel time. The distance between the two stations is $50\cdot 4 +40 = 240$ km. Then the speed the train must keep to be on schedule is $\frac{240}{4} = 60$ km/hr.

Problem 23 The distance between towns A and B is 300 km. One train departs from town A and another train departs from town B, both leaving at the same moment of time and heading towards each other. We know that one of them is 10 km/hr faster than the other. Find the speeds of both trains if 2 hours after their departure the distance between them is 40 km. Click to see solution Solution: Let the speed of the slower train be $x$ km/hr. Then the speed of the faster train is $(x + 10)$ km/hr. In 2 hours they cover $2x$ km and $2(x +10)$km, respectively. Therefore if they didn't meet yet, the whole distance from A to B is $2x + 2(x +10) +40 = 4x +60$ km. However, if they already met and continued to move, the distance would be $2x + 2(x + 10) - 40 = 4x - 20$km. So we get the following equations: $4x + 60 = 300$ $4x = 240$ $x = 60$ or $4x - 20 = 300$ $4x = 320$ $x = 80$ Hence the speed of the slower train is $60$ km/hr or $80$ km/hr and the speed of the faster train is $70$ km/hr or $90$ km/hr.

Problem 24 A bus travels from town A to town B. If the bus's speed is 50 km/hr, it will arrive in town B 42 min later than scheduled. If the bus increases its speed by $\frac{50}{9}$ m/sec, it will arrive in town B 30 min earlier than scheduled. Find: A) The distance between the two towns; B) The bus's scheduled time of arrival in B; C) The speed of the bus when it's on schedule. Click to see solution Solution: First we will determine the speed of the bus following its increase. The speed is increased by $\frac{50}{9}$ m/sec $= \frac{50\cdot60\cdot60}{\frac{9}{1000}}$ km/hr $= 20$ km/hr. Therefore, the new speed is $V = 50 + 20 = 70$ km/hr. If $x$ is the number of hours according to the schedule, then at the speed of 50 km/hr the bus travels from A to B within $(x +\frac{42}{60})$ hr. When the speed of the bus is $V = 70$ km/hr, the travel time is $x - \frac{30}{60}$ hr. Then $50(x +\frac{42}{60}) = 70(x-\frac{30}{60})$ $5(x+\frac{7}{10}) = 7(x-\frac{1}{2})$ $\frac{7}{2} + \frac{7}{2} = 7x -5x$ $2x = 7$ $x = \frac{7}{2}$ hr. So, the bus is scheduled to make the trip in $3$ hr $30$ min. The distance between the two towns is $70(\frac{7}{2} - \frac{1}{2}) = 70\cdot 3 = 210$ km and the scheduled speed is $\frac{210}{\frac{7}{2}} = 60$ km/hr.

Math Problem Answers

Math problem answers are solved here step-by-step to keep the explanation clear to the students. In Math-Only-Math you'll find abundant selection of all types of math questions for all the grades with the complete step-by-step solutions.

Parents and teachers can follow math-only-math to help their students to improve and polish their knowledge. Children can practice the worksheets of all the grades and on all the topics to increase their knowledge.

Various types of Math Problem Answers are solved here.

1. Mrs. Rodger got a weekly raise of $145. If she gets paid every other week, write an integer describing how the raise will affect her paycheck.

Let the 1st paycheck be x (integer). Mrs. Rodger got a weekly raise of $ 145. So after completing the 1st week she will get $ (x+145). Similarly after completing the 2nd week she will get $ (x + 145) + $ 145. = $ (x + 145 + 145) = $ (x + 290) So in this way end of every week her salary will increase by $ 145.

3. Mr. Jones sold two pipes at $1.20 each. Based on the cost, his profit one was 20% and his loss on the other was 20%. On the sale of the pipes, he: (a) broke even, (b) lost 4 cents, (c) gained 4 cents, (d) lost 10 cents, (e) gained 10 cents Solution:

Selling price of the first pipe = $1.20

Profit = 20%

Let’s try to find the cost price of the first pipe

CP = Selling price - Profit

CP = 1.20 - 20% of CP

CP = 1.20 - 0.20CP

CP + 0.20CP = 1.20

1.20CP = 1.20

CP = \(\frac{1.20}{1.20}\)

Selling price of the Second pipe = $1.20

Let’s try to find the cost price of the second pipe

CP = Selling price + Loss

CP = 1.20 + 20% of CP

CP = 1.20 + 0.20CP

CP - 0.20CP = 1.20

0.80CP = 1.20

CP = \(\frac{1.20}{0.80}\)

Therefore, total cost price of the two pipes = $1.00 + $1.50 = $2.50

 And total selling price of the two pipes = $1.20 + $1.20 = $2.40

Loss = $2.50 – $2.40 = $0.10

Therefore, Mr. Jones loss 10 cents.

Answer:   (d) 

5. A man has $ 10,000 to invest. He invests $ 4000 at 5 % and $ 3500 at 4 %. In order to have a yearly income of $ 500, he must invest the remainder at: (a) 6 % , (b) 6.1 %, (c) 6.2 %, (d) 6.3 %, (e) 6.4 % Solution: Income from $ 4000 at 5 % in one year = $ 4000 of 5 %. = $ 4000 × 5/100. = $ 4000 × 0.05. = $ 200. Income from $ 3500 at 4 % in one year = $ 3500 of 4 %. = $ 3500 × 4/100. = $ 3500 × 0.04. = $ 140. Total income from 4000 at 5 % and 3500 at 4 % = $ 200 + $ 140 = $ 340. Remaining income amount in order to have a yearly income of $ 500 = $ 500 - $ 340. = $ 160. Total invested amount = $ 4000 + $ 3500 = $7500. Remaining invest amount = $ 10000 - $ 7500 = $ 2500. We know that, Interest = Principal × Rate × Time Interest = $ 160, Principal = $ 2500, Rate = r [we need to find the value of r], Time = 1 year. 160 = 2500 × r × 1. 160 = 2500r 160/2500 = 2500r/2500 [divide both sides by 2500] 0.064 = r r = 0.064 Change it to a percent by moving the decimal to the right two places r = 6.4 % Therefore, he invested the remaining amount $ 2500 at 6.4 % in order to get $ 500 income every year. Answer: (e) 6. Jones covered a distance of 50 miles on his first trip. On a later trip he traveled 300 miles while going three times as fast. His new time compared with the old time was: (a) three times as much, (b) twice as much, (c) the same, (d) half as much, (e) a third as much Solution: Let speed of the 1st trip x miles / hr. and speed of the 2nd trip 3x / hr. We know that Speed = Distance/Time. Or, Time = Distance/Speed. So, times taken to covered a distance of 50 miles on his first trip = 50/x hr. And times taken to covered a distance of 300 miles on his later trip = 300/3x hr. = 100/x hr. So we can clearly see that his new time compared with the old time was: twice as much. Answer: (b)

Partial Fraction

11. Kalin walks at a constant rate of 5/8  kilometers per hour. The beach is 3/4 kilometers from his home. How long does it take Kalin to walk from his home to the beach?

Speed =  \(\frac{5}{8}\) kilometers per hour.

Distance =  \(\frac{3}{4}\) kilometers

Distance =  Speed × Time

or, Time = Distance/Speed

            = (\(\frac{3}{4}\) ÷ \(\frac{5}{8}\)) hours

            = (\(\frac{3}{4}\) × \(\frac{8}{5}\)) hours

            = \(\frac{24}{20}\) hours

            = \(\frac{6}{5}\) hours

            = 1\(\frac{1}{5}\) hours

Answer:  1\(\frac{1}{5}\) hours

12.  The cost price of one refrigerator is $23,547. How many refrigerators can be purchased for $ 588,675 ?

Total amount = $588,675

Cost price of one refrigerator = $23,547.

No. of  refrigerators = $588,675 ÷ $23,547 = 25

13. In an University auditorium each row has 35 seats. Determine the minimum number of rows required to seat 1,575 students at a time.

Total number of seats = 1,575

Each row has 35 seats.

No. of  rows required = 1,575 ÷ 35 = 45

14. What least number must be added to 15896 to get a number exactly divisible by 29?

First divide  15896 by 29.

15896 = 29 × 548 + 4

The remainder is 4

Therefore, we need to add 4 to  15896 it will exactly divisible by 29.

15. Find the largest 6-digit number exactly divisible by 174.

The largest 6-digit number = 999999

Now divide the  largest 6-digit number (999999) by 174

999999 = 174 × 5747 + 21

Remainder = 21

Now subtract the remainder 21 from the  largest 6-digit number 999999.

Therefore, 999999 - 21 =  999978 is the  largest 6-digit number exactly divisible by 174.

Answer: 999978

16. On diving 80,256 by 187, the remainder is 33. Find the quotient.

Dividend = Divisor × Quotient + Remainder

80,256 = 187 × Quotient + 33

187 × Quotient = 80,256 - 33

187 × Quotient =  80223

Quotient  = 80223 ÷ 187 = 429

Answer: 429

17. During prayer time in a school, 35 students stand in each row. Find the minimum number of rows if there are 1,575 students in that school.

Number of students in each row = 35

Number of row =  1,575 ÷ 35 = 45

18. A motorcycle travels 1494 km in 18 hours. What is the average speed of the car?

Distance traveled = 1494 km

Time =  18 hours

Average speed =  Distance traveled ÷ Time 

                      = (1494 ÷ 18) km/hr

                      = 83 km/hr

Answer: 83 km/hr

19. Divide 78938 by 75 and check the result by division algorithm.

By actual division, we have

 Division Algorithm

Here, dividend = 78938,

quotient 1052 and

remainder  38.

   Quotient × Divisor + Remainder = 1052 × 75 + 38

= 78900 + 38

= 78938  = dividend

20. Find the number which when divided by 67 gives 17 as quotient and 11 as remainder.

Here, divisor = 67, quotient = 17 and remainder 11

By division algorithm, we have

              = 67 × 17 + 11

              = 1,139 + 11

              = 1,150

Hence, the required number is 1,150.

Unsolved Questions:

1. Fahrenheit temperature F is a linear function of Celsius temperature C. The ordered pair (0, 32) is an ordered pair of this function because 0°C is equivalent to 32°F, the freezing point of water. The ordered pair (100, 212) is also an ordered pair of this function because 100°C is equivalent to 212° F, the boiling point of water.

2. A sports field is 300 feet long. Write a formula that gives the length of x sports fields in feet. Then use this formula to determine the number of sports fields in 720 feet.

3. A recipe calls for 2 1/2 cups and I want to make 1 1/2 recipes. How many cups do I need?

4. Mario answered 30% of the questions correctly. The test contained a total of 80 questions. How many questions did Mario answer correctly?

5. Mary’s credit card company charges 16% interest on her outstanding credit card balance each month. Her minimum payment is $20 each month. Mary’s credit card bill is $70 in January. Mary only pays the minimum amount each month, and she does not spend any additional money on her credit card. How long, in months, will it take her to pay off her bill from January?

6.  Imagine a can of purple paint that is 3/4 full. This purple paint consists of 40% red paint and 60% blue paint.

Part A : A painter decides to fill the remaining 1/4 of the can with red paint and mixes everything together thoroughly. What percentage of the new mixture is blue paint?

Answer:_________________

Part B: If the painter had chosen to fill the remaining 1/4 of the can with blue paint instead of red paint and mixed it thoroughly, what percentage of the new mixture would be blue paint?

7. Brandon has skittles and M&M's in his candy jar in a ratio of 3:5. His little sister Paige comes home from school one day and when Brandon isn't there she eats 1/3 of the skittles. If there are 56 pieces of candy in the jar after Paige eats the skittles, how many M&M's are in the jar?

● Math Questions Answers

● Help with Math Problems ● Answer Math Problems ● Math Problem Solver ● Math Unsolved Questions ● Math Questions ● Math Word Problems ● Word Problems on Speed Distance Time ● Algebra Word Problems – Money

From Math Problem Answers to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math . Use this Google Search to find what you need.

New! Comments

What’s this?

Facebook X Pinterest WhatsApp Messenger
  • Preschool Activities
  • Kindergarten Math
  • 1st Grade Math
  • 2nd Grade Math
  • 3rd Grade Math
  • 4th Grade Math
  • 5th Grade Math
  • 6th Grade Math
  • 7th Grade Math
  • 8th Grade Math
  • 9th Grade Math
  • 10th Grade Math
  • 11 & 12 Grade Math
  • Concepts of Sets
  • Probability
  • Boolean Algebra
  • Math Coloring Pages
  • Multiplication Table
  • Cool Maths Games
  • Math Flash Cards
  • Online Math Quiz
  • Math Puzzles
  • Binary System
  • Math Dictionary
  • Conversion Chart
  • Homework Sheets
  • Math Problem Ans
  • Free Math Answers
  • Printable Math Sheet
  • Funny Math Answers
  • Employment Test
  • Math Patterns
  • Link Partners
  • Privacy Policy
E-mail Address
First Name

to send you Math Only Math.

Recent Articles

Classification of triangle | types of triangles |isosceles|equilateral.

Jun 28, 24 03:59 PM

Measuring an Angle | Using Protractor | Comparison of Angles | Example

Jun 28, 24 03:36 PM

Measurement of Angles

Pairs of Angles | Complementary Angles | Supplementary Angles|Adjacent

Jun 28, 24 12:47 AM

Classification of Angles | Types of Angles | Acute, Right, Obtuse, ...

Jun 28, 24 12:33 AM

Worksheet on Angles | Questions on Angles | Homework on Angles

Jun 28, 24 12:27 AM

Worksheet on Angles

© and ™ math-only-math.com. All Rights Reserved. 2010 - 2024.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

Khan Academy Blog

Free Math Worksheets — Over 100k free practice problems on Khan Academy

Looking for free math worksheets.

You’ve found something even better!

That’s because Khan Academy has over 100,000 free practice questions. And they’re even better than traditional math worksheets – more instantaneous, more interactive, and more fun!

Just choose your grade level or topic to get access to 100% free practice questions:

Kindergarten, basic geometry, pre-algebra, algebra basics, high school geometry.

  • Trigonometry

Statistics and probability

High school statistics, ap®︎/college statistics, precalculus, differential calculus, integral calculus, ap®︎/college calculus ab, ap®︎/college calculus bc, multivariable calculus, differential equations, linear algebra.

  • Addition and subtraction
  • Place value (tens and hundreds)
  • Addition and subtraction within 20
  • Addition and subtraction within 100
  • Addition and subtraction within 1000
  • Measurement and data
  • Counting and place value
  • Measurement and geometry
  • Place value
  • Measurement, data, and geometry
  • Add and subtract within 20
  • Add and subtract within 100
  • Add and subtract within 1,000
  • Money and time
  • Measurement
  • Intro to multiplication
  • 1-digit multiplication
  • Addition, subtraction, and estimation
  • Intro to division
  • Understand fractions
  • Equivalent fractions and comparing fractions
  • More with multiplication and division
  • Arithmetic patterns and problem solving
  • Quadrilaterals
  • Represent and interpret data
  • Multiply by 1-digit numbers
  • Multiply by 2-digit numbers
  • Factors, multiples and patterns
  • Add and subtract fractions
  • Multiply fractions
  • Understand decimals
  • Plane figures
  • Measuring angles
  • Area and perimeter
  • Units of measurement
  • Decimal place value
  • Add decimals
  • Subtract decimals
  • Multi-digit multiplication and division
  • Divide fractions
  • Multiply decimals
  • Divide decimals
  • Powers of ten
  • Coordinate plane
  • Algebraic thinking
  • Converting units of measure
  • Properties of shapes
  • Ratios, rates, & percentages
  • Arithmetic operations
  • Negative numbers
  • Properties of numbers
  • Variables & expressions
  • Equations & inequalities introduction
  • Data and statistics
  • Negative numbers: addition and subtraction
  • Negative numbers: multiplication and division
  • Fractions, decimals, & percentages
  • Rates & proportional relationships
  • Expressions, equations, & inequalities
  • Numbers and operations
  • Solving equations with one unknown
  • Linear equations and functions
  • Systems of equations
  • Geometric transformations
  • Data and modeling
  • Volume and surface area
  • Pythagorean theorem
  • Transformations, congruence, and similarity
  • Arithmetic properties
  • Factors and multiples
  • Reading and interpreting data
  • Negative numbers and coordinate plane
  • Ratios, rates, proportions
  • Equations, expressions, and inequalities
  • Exponents, radicals, and scientific notation
  • Foundations
  • Algebraic expressions
  • Linear equations and inequalities
  • Graphing lines and slope
  • Expressions with exponents
  • Quadratics and polynomials
  • Equations and geometry
  • Algebra foundations
  • Solving equations & inequalities
  • Working with units
  • Linear equations & graphs
  • Forms of linear equations
  • Inequalities (systems & graphs)
  • Absolute value & piecewise functions
  • Exponents & radicals
  • Exponential growth & decay
  • Quadratics: Multiplying & factoring
  • Quadratic functions & equations
  • Irrational numbers
  • Performing transformations
  • Transformation properties and proofs
  • Right triangles & trigonometry
  • Non-right triangles & trigonometry (Advanced)
  • Analytic geometry
  • Conic sections
  • Solid geometry
  • Polynomial arithmetic
  • Complex numbers
  • Polynomial factorization
  • Polynomial division
  • Polynomial graphs
  • Rational exponents and radicals
  • Exponential models
  • Transformations of functions
  • Rational functions
  • Trigonometric functions
  • Non-right triangles & trigonometry
  • Trigonometric equations and identities
  • Analyzing categorical data
  • Displaying and comparing quantitative data
  • Summarizing quantitative data
  • Modeling data distributions
  • Exploring bivariate numerical data
  • Study design
  • Probability
  • Counting, permutations, and combinations
  • Random variables
  • Sampling distributions
  • Confidence intervals
  • Significance tests (hypothesis testing)
  • Two-sample inference for the difference between groups
  • Inference for categorical data (chi-square tests)
  • Advanced regression (inference and transforming)
  • Analysis of variance (ANOVA)
  • Scatterplots
  • Data distributions
  • Two-way tables
  • Binomial probability
  • Normal distributions
  • Displaying and describing quantitative data
  • Inference comparing two groups or populations
  • Chi-square tests for categorical data
  • More on regression
  • Prepare for the 2020 AP®︎ Statistics Exam
  • AP®︎ Statistics Standards mappings
  • Polynomials
  • Composite functions
  • Probability and combinatorics
  • Limits and continuity
  • Derivatives: definition and basic rules
  • Derivatives: chain rule and other advanced topics
  • Applications of derivatives
  • Analyzing functions
  • Parametric equations, polar coordinates, and vector-valued functions
  • Applications of integrals
  • Differentiation: definition and basic derivative rules
  • Differentiation: composite, implicit, and inverse functions
  • Contextual applications of differentiation
  • Applying derivatives to analyze functions
  • Integration and accumulation of change
  • Applications of integration
  • AP Calculus AB solved free response questions from past exams
  • AP®︎ Calculus AB Standards mappings
  • Infinite sequences and series
  • AP Calculus BC solved exams
  • AP®︎ Calculus BC Standards mappings
  • Integrals review
  • Integration techniques
  • Thinking about multivariable functions
  • Derivatives of multivariable functions
  • Applications of multivariable derivatives
  • Integrating multivariable functions
  • Green’s, Stokes’, and the divergence theorems
  • First order differential equations
  • Second order linear equations
  • Laplace transform
  • Vectors and spaces
  • Matrix transformations
  • Alternate coordinate systems (bases)

Frequently Asked Questions about Khan Academy and Math Worksheets

Why is khan academy even better than traditional math worksheets.

Khan Academy’s 100,000+ free practice questions give instant feedback, don’t need to be graded, and don’t require a printer.

Math WorksheetsKhan Academy
Math worksheets take forever to hunt down across the internetKhan Academy is your one-stop-shop for practice from arithmetic to calculus
Math worksheets can vary in quality from site to siteEvery Khan Academy question was written by a math expert with a strong education background
Math worksheets can have ads or cost moneyKhan Academy is a nonprofit whose resources are always free to teachers and learners – no ads, no subscriptions
Printing math worksheets use up a significant amount of paper and are hard to distribute during virtual learningKhan Academy practice requires no paper and can be distributed whether your students are in-person or online
Math worksheets can lead to cheating or a lack of differentiation since every student works on the same questionsKhan Academy has a full question bank to draw from, ensuring that each student works on different questions – and at their perfect skill level
Math worksheets can slow down student learning since they need to wait for feedbackKhan Academy gives instant feedback after every answer – including hints and video support if students are stuck
Math worksheets take up time to collect and take up valuable planning time to gradeKhan Academy questions are graded instantly and automatically for you

What do Khan Academy’s interactive math worksheets look like?

Here’s an example:

What are teachers saying about Khan Academy’s interactive math worksheets?

“My students love Khan Academy because they can immediately learn from their mistakes, unlike traditional worksheets.”

Is Khan Academy free?

Khan Academy’s practice questions are 100% free—with no ads or subscriptions.

What do Khan Academy’s interactive math worksheets cover?

Our 100,000+ practice questions cover every math topic from arithmetic to calculus, as well as ELA, Science, Social Studies, and more.

Is Khan Academy a company?

Khan Academy is a nonprofit with a mission to provide a free, world-class education to anyone, anywhere.

Want to get even more out of Khan Academy?

Then be sure to check out our teacher tools . They’ll help you assign the perfect practice for each student from our full math curriculum and track your students’ progress across the year. Plus, they’re also 100% free — with no subscriptions and no ads.

Get Khanmigo

The best way to learn and teach with AI is here. Ace the school year with our AI-powered guide, Khanmigo. 

For learners     For teachers     For parents

MathPapa Practice

MathPapa Practice has practice problems to help you learn algebra.

Basic Arithmetic

Subtraction, multiplication, basic arithmetic review, multi-digit arithmetic, addition (2-digit), subtraction (2-digit), multiplication (2-digit by 1-digit), division (2-digit answer), multiplication (2-digit by 2-digit), multi-digit division, negative numbers, addition: negative numbers, subtraction: negative numbers, multiplication: negative numbers, division: negative numbers, order of operations, order of operations 1, basic equations, equations: fill in the blank 1, equations: fill in the blank 2, equations: fill in the blank 3 (order of operations), fractions of measurements, fractions of measurements 2, adding fractions, subtracting fractions, adding fractions: fill in the blank, multiplication: fractions 1, multiplication: fractions 2, division: fractions 1, division: fractions 2, division: fractions 3, addition (decimals), subtraction (decimals), multiplication 2 (example problem: 3.5*8), multiplication 3 (example problem: 0.3*80), division (decimals), division (decimals 2), percentages, percentages 1, percentages 2, chain reaction, balance arithmetic, number balance, basic balance 1, basic balance 2, basic balance 3, basic balance 4, basic balance 5, basic algebra, basic algebra 1, basic algebra 2, basic algebra 3, basic algebra 4, basic algebra 5, algebra: basic fractions 1, algebra: basic fractions 2, algebra: basic fractions 3, algebra: basic fractions 4, algebra: basic fractions 5.

Math word Problems With Answers for Grade 6

Grade 6 maths word problems with answers are presented. Some of these problems are challenging and need more time to solve. Also detailed solutions and full explanations are included.

  • Two numbers N and 16 have LCM = 48 and GCF = 8. Find N.
  • If the area of a circle is 81pi square feet, find its circumference.
  • Find the greatest common factor of 24, 40 and 60.
  • In a given school, there are 240 boys and 260 girls. a) What is the ratio of the number of girls to the number of boys? b) What is the ratio of the number of boys to the total number of pupils in the school?
  • If Tim had lunch at $50.50 and he gave 20% tip, how much did he spend?
  • Find k if 64 ÷ k = 4.
  • Little John had $8.50. He spent $1.25 on sweets and gave to his two friends $1.20 each. How much money was left?
  • What is x if x + 2y = 10 and y = 3?
  • A telephone company charges initially $0.50 and then $0.11 for every minute. Write an expression that gives the cost of a call that lasts N minutes.
  • A car gets 40 kilometers per gallon of gasoline. How many gallons of gasoline would the car need to travel 180 kilometers?
  • A machine fills 150 bottles of water every 8 minutes. How many minutes it takes this machine to fill 675 bottles?
  • A car travels at a speed of 65 miles per hour. How far will it travel in 5 hours?
  • A small square of side 2x is cut from the corner of a rectangle with a width of 10 centimeters and length of 20 centimeters. Write an expression in terms of x for the area of the remaining shape.
  • A rectangle A with length 10 centimeters and width 5 centimeters is similar to another rectangle B whose length is 30 centimeters. Find the area of rectangle B.
  • A school has 10 classes with the same number of students in each class. One day, the weather was bad and many students were absent. 5 classes were half full, 3 classes were 3/4 full and 2 classes were 1/8 empty. A total of 70 students were absent. How many students are in this school when no students are absent?
  • The perimeter of square A is 3 times the perimeter of square B. What is the ratio of the area of square A to the area of square B.
  • John gave half of his stamps to Jim. Jim gave gave half of his stamps to Carla. Carla gave 1/4 of the stamps given to her to Thomas and kept the remaining 12. How many stamps did John start with?
  • Two balls A and B rotate along a circular track. Ball A makes 4 full rotations in 120 seconds. Ball B makes 3 full rotation in 60 seconds. If they start rotating now from the same point, when will they be at the same starting point again?
  • A segment is 3 units long. It is divided into 9 parts. What fraction of a unit are 2 parts of the segment?
  • A car is traveling 75 kilometers per hour. How many meters does the car travel in one minute?
  • Carla is 5 years old and Jim is 13 years younger than Peter. One year ago, Peter's age was twice the sum of Carla's & Jim's age. Find the present age of each one of them.
  • Linda spent 3/4 of her savings on furniture. She then spent 1/2 of her remaining savings on a fridge. If the fridge cost her $150, what were her original savings?
  • The distance bewteen Harry and Kate is 2500 meters. Kate and Harry start walking toward one another and Kate' dog start running back and forth between Harry and Kate at a speed of 120 meters per minute. Harry walks at the speed of 40 meters per minute while Kate walks at the speed of 60 meters per minute. What distance will the dog have travelled when Harry and Kate meet each other?

Answers to the Above Questions

  • a) 13:12 b)12:25
  • 0.50 + N * 0.11
  • 4.5 gallons
  • 450 centimeters squared
  • 108 cubic centimeters
  • 1250 meters/minute
  • Carla:5 years, Jim: 6 years, Peter: 19 years.
  • 3000 meters

Microsoft

Game Central

The Hechinger Report

Covering Innovation & Inequality in Education

Why schools are teaching math word problems all wrong

Avatar photo

Share this:

  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Pinterest (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to email a link to a friend (Opens in new window)

The Hechinger Report is a national nonprofit newsroom that reports on one topic: education. Sign up for our  weekly newsletters  to get stories like this delivered directly to your inbox. Consider supporting our stories and becoming  a member  today.

math problem solving answer

Get important education news and analysis delivered straight to your inbox

  • Weekly Update
  • Future of Learning
  • Higher Education
  • Early Childhood
  • Proof Points

CENTRAL FALLS, R.I. — When Natalia Molina began teaching her second grade students word problems earlier this school year, every lesson felt difficult. Most students were stymied by problems such as: “Sally went shopping. She spent $86 on groceries and $39 on clothing. How much more did Sally spend on groceries than on clothing?”

Website for The Boston Globe

Both Molina, a first-year teacher, and her students had been trained to tackle word problems by zeroing in on key words like “and,” “more” and “total”  — a simplistic approach that Molina said too often led her students astray. After recognizing the word “and,” for instance, they might mistakenly assume that they needed to add two nearby numbers together to arrive at an answer.

Some weaker readers, lost in a sea of text, couldn’t recognize any words at all.

“I saw how overwhelmed they would get,” said Molina, who teaches at Segue Institute for Learning, a predominantly Hispanic charter school in this small city just north of Providence.

So, with the help of a trainer doing work in Rhode Island through a state grant, Molina and some of her colleagues revamped their approach to teaching word problems this winter — an effort that they said is already paying off in terms of increased student confidence and ability. “It has been a game changer for them,” Molina said.

math problem solving answer

Perhaps no single educational task encompasses as many different skills as the word problem. Between reading, executive functioning, problem solving, computation and vocabulary, there are a lot of ways for students to go wrong. And for that reason, students perform significantly worse overall on word problems compared to questions more narrowly focused on computation or shapes (for example: “Solve 7 + _ = 22” or “What is 64 x 3?”).

If a student excels at word problems, it’s a good sign that they’re generally excelling at school. “Word-problem solving in lower grades is one of the better indicators of overall school success in K-12,” said Lynn Fuchs, a research professor at Vanderbilt University. In a large national survey , for instance, algebra teachers rated word-problem solving as the most important among 15 skills required to excel in the subject.

Teacher takeaways

  • Don’t instruct students to focus mainly on “key words” in word problems such as “and” or “more” 
  • Mix question types in any lesson so that students don’t assume they just apply the same operation (addition, subtraction) again and again
  • Teach students the underlying structure — or schema — of the word problem

Yet most experts and many educators agree that too many schools are doing it wrong, particularly in the elementary grades. And in a small but growing number of classrooms, teachers like Molina are working to change that. “With word problems, there are more struggling learners than non-struggling learners” because they are taught so poorly, said Nicole Bucka, who works with teachers throughout Rhode Island to provide strategies for struggling learners.

Too many teachers, particularly in the early grades, rely on key words to introduce math problems. Posters displaying the terms — sum, minus, fewer, etc. — tied to operations including addition and subtraction are a staple in elementary school classrooms across the country.

Key words can be a convenient crutch for both students and teachers, but they become virtually meaningless as the problems become harder, according to researchers. Key words can help first graders figure out whether to add or subtract more than half of the time, but the strategy rarely works for the multi-step problems students encounter starting in second and third grade. “With multi-step problems, key words don’t work 90 percent of the time,” said Sarah Powell, a professor at the University of Texas in Austin who studies word problems and whose research has highlighted the inefficacy of key words . “But the average kindergarten teacher is not thinking about that; they are teaching 5-year-olds, not 9-year-olds.”

Many teachers in the youngest grades hand out worksheets featuring the same type of word problem repeated over and over again. That’s what Molina’s colleague, Cassandra Santiago, did sometimes last year when leading a classroom on her own for the first time. “It was a mistake,” the first grade teacher said. “It’s really important to mix them up. It makes them think more critically about the parts they have to solve.”

math problem solving answer

Another flaw with word problem instruction is that the overwhelming majority of questions are divorced from the actual problem-solving a child might have to do outside the classroom in their daily life — or ever, really. “I’ve seen questions about two trains going on the same track,” said William Schmidt, a University Distinguished Professor at Michigan State University. “First, why would they be going on the same track and, second, who cares?”

Schmidt worked on an analysis of about 8,000 word problems used in 23 textbooks in 19 countries. He found that less than one percent had “real world applications” and involved “higher order math applications .”

“That is one of the reasons why children have problems with mathematics,” he said. “They don’t see the connection to the real world … We’re at this point in math right now where we are just teaching students how to manipulate numbers.”

He said a question, aimed at middle schoolers, that does have real world connections and involves more than manipulating numbers, might be: “Shopping at the new store in town includes a 43% discount on all items which are priced the same at $2. The state you live in has a 7% sales tax. You want to buy many things but only have a total of $52 to spend. Describe in words how many things you could buy.”

Schmidt added that relevancy of word problems is one area where few, if any, countries excel. “No one was a shining star leading the way,” he said. 

In her brightly decorated classroom one Tuesday afternoon, Santiago, the first grade teacher, gave each student a set of animal-shaped objects and a sheet of blue paper (the water) and green (the grass). “We’re going to work on a number story,” she told them. “I want you to use your animals to tell me the story.”

“ Once upon a time,” the story began. In this tale, three animals played in the water, and two animals played in the grass. Santiago allowed some time for the ducks, pigs and bears to frolic in the wilds of each student’s desk before she asked the children to write a number sentence that would tell them how many animals they have altogether.

Some of the students relied more on pictorial representations (three dots on one side of a line and two dots on the other) and others on the number sentence (3+2 = 5) but all of them eventually got to five. And Santiago made sure that her next question mixed up the order of operations (so students didn’t incorrectly assume that all they ever have to do is add): “Some more animals came and now there are seven. So how many more came?”

One approach to early elementary word problems that is taking off in some schools, including Segue Institute, has its origins in a special education intervention for struggling math students. Teachers avoid emphasizing key words and ask students instead to identify first the conceptual type of word problem (or schema, as many practitioners and researchers refer to it) they are dealing with: “Total problems,” for instance, involve combining two parts to find a new amount; “change problems” involve increasing or decreasing the amount of something. Total problems do not necessarily involve adding, however.

math problem solving answer

“The schemas that students learn in kindergarten will continue with them throughout their whole career,” said Powell, the word-problem researcher, who regularly works with districts across the country to help implement the approach. 

In Olathe, Kansas — a district inspired by Powell’s work — teachers had struggled for years with word problems, said Kelly Ulmer, a math support specialist whose goal is to assist in closing academic gaps that resulted from lost instruction time during the pandemic. “We’ve all tried these traditional approaches that weren’t working,” she said. “Sometimes you get pushback on new initiatives from veteran teachers and one of the things that showed us how badly this was needed is that the veteran teachers were the most excited and engaged — they have tried so many things” that haven’t worked.

In Rhode Island, many elementary schools initially used the strategy with students who required extra help, including those in special education, but expanded this use to make it part of the core instruction for all, said Bucka. In some respects, it’s similar to the recent, well publicized evolution of reading instruction in which some special education interventions for struggling readers  — most notably, a greater reliance on phonics in the early grades — have gone mainstream.

There is an extensive research bas e showing that focusing on the different conceptual types of word problems is an effective way of teaching math, although much of the research focuses specifically on students experiencing difficulties in the subject. 

Molina has found asking students to identify word problems by type to be a useful tool with nearly all of her second graders; next school year she hopes to introduce the strategy much earlier.

math problem solving answer

One recent afternoon, a lesson on word problems started with everyone standing up and chanting in unison: “Part plus part equals total” (they brought two hands together). “Total minus part equals part ” (they took one hand away) .

It’s a way to help students remember different conceptual frameworks for word problems. And it’s especially effective for the students who learn well through listening and repeating. For visual learners, the different types of word problems were mapped out on individual dry erase mats.

The real work began when Molina passed out questions, and the students— organized into the Penguin, Flower Bloom, Red Panda and Marshmallow teams — had to figure out which framework they were dealing with on their own and then work toward an answer. A few months ago, many of them would have automatically shut down when they saw the text on the page, Molina said.

For the Red Pandas, the question under scrutiny was: “The clothing store had 47 shirts. They sold 21, how many do they have now?”

“It’s a total problem,” one student said.

“No, it’s not total,” responded another.

“I think it’s about change,” said a third.

None of the students seemed worried about their lack of consensus, however. And neither was Molina. A correct answer is always nice but those come more often now that most of the students have made a crucial leap. “I notice them thinking more and more,” she said, “about what the question is actually asking.”

This story about word problems was produced by The Hechinger Report , a nonprofit, independent news organization focused on inequality and innovation in education. Sign up for the Hechinger newsletter .

Related articles

The Hechinger Report provides in-depth, fact-based, unbiased reporting on education that is free to all readers. But that doesn't mean it's free to produce. Our work keeps educators and the public informed about pressing issues at schools and on campuses throughout the country. We tell the whole story, even when the details are inconvenient. Help us keep doing that.

Join us today.

Sarah Carr CONTRIBUTING EDITOR

Email:... More by Sarah Carr

Number Line

  • x^{2}-x-6=0
  • -x+3\gt 2x+1
  • line\:(1,\:2),\:(3,\:1)
  • prove\:\tan^2(x)-\sin^2(x)=\tan^2(x)\sin^2(x)
  • \frac{d}{dx}(\frac{3x+9}{2-x})
  • (\sin^2(\theta))'
  • \lim _{x\to 0}(x\ln (x))
  • \int e^x\cos (x)dx
  • \int_{0}^{\pi}\sin(x)dx
  • \sum_{n=0}^{\infty}\frac{3}{2^n}
  • Is there a step by step calculator for math?
  • Symbolab is the best step by step calculator for a wide range of math problems, from basic arithmetic to advanced calculus and linear algebra. It shows you the solution, graph, detailed steps and explanations for each problem.
  • Is there a step by step calculator for physics?
  • Symbolab is the best step by step calculator for a wide range of physics problems, including mechanics, electricity and magnetism, and thermodynamics. It shows you the steps and explanations for each problem, so you can learn as you go.
  • How to solve math problems step-by-step?
  • To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem.
  • My Notebook, the Symbolab way Math notebooks have been around for hundreds of years. You write down problems, solutions and notes to go back...

Please add a message.

Message received. Thanks for the feedback.

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

IMAGES

  1. 2x tables (problem solving) answer sheet

    math problem solving answer

  2. 3 Simple Math Problem Solving Tips for Success

    math problem solving answer

  3. Answer Key-Frontier Math Problem Solving by Frontier Classroom Aids

    math problem solving answer

  4. 5x tables (problem solving) answer sheet

    math problem solving answer

  5. Maths Problem Solving Questions And Answers

    math problem solving answer

  6. 7x tables (problem solving) answer sheet

    math problem solving answer

VIDEO

  1. Math Problem Solving ✍️ A Nice Algebra Problem ✍️

  2. Math Problem Solving ✍️

  3. Math Problem Solving ✍️

  4. We Think Technology Solves Everything

  5. Math problem solving 👊👊

  6. Can You Solve This Easy Math Problem in Your Mind?

COMMENTS

  1. Mathway

    Free math problem solver answers your algebra homework questions with step-by-step explanations. Mathway. Visit Mathway on the web. Start 7-day free trial on the app. Start 7-day free trial on the app. Download free on Amazon. Download free in Windows Store. Take a photo of your math problem on the app. get Go. Algebra. Basic Math.

  2. Microsoft Math Solver

    Get math help in your language. Works in Spanish, Hindi, German, and more. Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

  3. Step-by-Step Calculator

    To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem.

  4. Symbolab

    Fractions Radical Equation Factoring Inverse Quadratic Simplify Slope Domain Antiderivatives Polynomial Equation Log Equation Cross Product Partial Derivative Implicit Derivative Tangent Complex Numbers. Symbolab: equation search and math solver - solves algebra, trigonometry and calculus problems step by step.

  5. Step-by-Step Math Problem Solver

    QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students. The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and ...

  6. GeoGebra Math Solver

    Get accurate solutions and step-by-step explanations for algebra and other math problems with the free GeoGebra Math Solver. Enhance your problem-solving skills while learning how to solve equations on your own. Try it now!

  7. Solve

    Differentiation. dxd (x − 5)(3x2 − 2) Integration. ∫ 01 xe−x2dx. Limits. x→−3lim x2 + 2x − 3x2 − 9. Solve your math problems using our free math solver with step-by-step solutions. Our math solver supports basic math, pre-algebra, algebra, trigonometry, calculus and more.

  8. Math Problem Solver

    Math Word Problem Solutions. Math word problems require interpreting what is being asked and simplifying that into a basic math equation. Once you have the equation you can then enter that into the problem solver as a basic math or algebra question to be correctly solved. Below are math word problem examples and their simplified forms.

  9. Cymath

    Cymath | Math Problem Solver with Steps | Math Solving App ... \\"Solve

  10. Practice Math Problems with Answers

    Learn more than what the answer is - with the math helper app, you'll learn the steps behind it too. Benefits. Even simple math problems become easier to solve when broken down into steps. From basic additions to calculus, the process of problem solving usually takes a lot of practice before answers could come easily.

  11. Math Problem Solver and Calculator

    Understand the how and why See how to tackle your equations and why to use a particular method to solve it — making it easier for you to learn.; Learn from detailed step-by-step explanations Get walked through each step of the solution to know exactly what path gets you to the right answer.; Dig deeper into specific steps Our solver does what a calculator won't: breaking down key steps ...

  12. MathGPT

    MathGPT is an AI-powered math problem solver, integral calculator, derivative cacluator, polynomial calculator, and more! Try it out now and solve your math homework! Snap, Solve, Submit! Upload a screenshot and solve any math, physics, or accounting problem instantly with MathGPT! MathGPT MathGPT Vision PhysicsGPT AccountingGPT. MathGPT can ...

  13. Mathway

    Free math problem solver answers your algebra, geometry, trigonometry, calculus, and statistics homework questions with step-by-step explanations, just like a math tutor. Mathway. Visit Mathway on the web. Start 7-day free trial on the app. Start 7-day free trial on the app. Download free on Amazon.

  14. AI Math Problem Solver

    Stop waiting, sign up now and in addition to our AI Math Problem Solver, we'll include free and exclusive discounts on courses, textbooks, and academic services valued at $1085. Monthly Yearly Save 67%. AI Math Calculator. 24/7 Availability. Quiz & Exam Help.

  15. Math Word Problems and Solutions

    Click to see solution. Problem 17. A biker covered half the distance between two towns in 2 hr 30 min. After that he increased his speed by 2 km/hr. He covered the second half of the distance in 2 hr 20 min. Find the distance between the two towns and the initial speed of the biker. Click to see solution. Problem 18.

  16. Practice

    Solve for a Variable. Factor. Expand. Evaluate Fractions. Linear Equations. Quadratic Equations. Inequalities. ... Type a math problem. New quiz. Least Common Multiple. 5 problems similar to: lcm(12,16) Exponents. 5 problems similar to: x \cdot x^2 \cdot 3x. Expand. 5 problems similar to: ...

  17. Math Problem Answers

    Math problem answers are solved here step-by-step to keep the explanation clear to the students. In Math-Only-Math you'll find abundant selection of all types of math questions for all the grades with the complete step-by-step solutions. Parents and teachers can follow math-only-math to help their students to improve and polish their knowledge.

  18. Free Math Worksheets

    Khan Academy's 100,000+ free practice questions give instant feedback, don't need to be graded, and don't require a printer. Math Worksheets. Khan Academy. Math worksheets take forever to hunt down across the internet. Khan Academy is your one-stop-shop for practice from arithmetic to calculus. Math worksheets can vary in quality from ...

  19. Math Practice Problems

    Addition (Decimals) Subtraction (Decimals) Multiplication 2 (Example Problem: 3.5*8) Multiplication 3 (Example Problem: 0.3*80) Division (Decimals) Division (Decimals 2)

  20. Math word Problems With Answers for Grade 6

    Problems. Two numbers N and 16 have LCM = 48 and GCF = 8. Find N. If the area of a circle is 81pi square feet, find its circumference. Find the greatest common factor of 24, 40 and 60. In a given school, there are 240 boys and 260 girls.

  21. Solve

    Integration. ∫ 01 xe−x2dx. Limits. x→−3lim x2 + 2x − 3x2 − 9. Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

  22. Why schools are teaching math word problems all wrong

    "Word-problem solving in lower grades is one of the better indicators of overall school success in K-12," said Lynn Fuchs, a research professor at Vanderbilt University. In a large national survey , for instance, algebra teachers rated word-problem solving as the most important among 15 skills required to excel in the subject.

  23. Can You Solve This Math Puzzle?

    Solving riddles isn't just a pastime; it's a cognitive workout with multifaceted benefits. Each riddle presents a unique challenge, honing problem-solving skills and encouraging creative ...

  24. Mathway

    Free math problem solver answers your calculus homework questions with step-by-step explanations. Mathway. Visit Mathway on the web. Start 7-day free trial on the app. Start 7-day free trial on the app. Download free on Amazon. Download free in Windows Store. Take a photo of your math problem on the app. get Go. Calculus.

  25. NYC Solves

    About the Curricula. A curriculum is how standards, or learning goals, for every grade and subject are translated into day-to-day activities. As part of the NYC Solves initiative, all high schools will use Illustrative Mathematics and districts will choose a comprehensive, evidence-based curricula for middle school math instruction from an approved list.

  26. Step-by-Step Calculator

    To solve math problems step-by-step start by reading the problem carefully and understand what you are being asked to find. Next, identify the relevant information, define the variables, and plan a strategy for solving the problem.

  27. Mathway

    Free math problem solver answers your statistics homework questions with step-by-step explanations. Mathway. Visit Mathway on the web. Start 7-day free trial on the app. Start 7-day free trial on the app. Download free on Amazon. Download free in Windows Store. Take a photo of your math problem on the app. get Go. Statistics.